Skip to main content
Log in

The Role of LAM Genes in the Pheromone-Induced Cell Death of S. cerevisiae Yeast

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Lam1–4 proteins perform non-vesicular transport of sterols from the plasma membrane to the endoplasmic reticulum. Disruption of their function leads to an increase in the content of sterols in the plasma membrane. In mammals, homologs of Lam proteins are responsible for the internalization of plasma cholesterol. The biological role of Lam proteins in yeast remains unclear, since the strains lacking individual LAM genes do not display any pronounced phenotype. Deletion of LAM1 (YSP1) gene inhibits the regulated death of Saccharomyces cerevisiae yeast cells induced by the mating pheromone. Here, we investigated whether LAM2 also plays a role in the cell death induced by the excess of mating pheromone and assessed genetic interactions between LAM2 and genes responsible for ergosterol biosynthesis. We have shown that LAM2 deletion partially prevents pheromone-induced death of yeast cells of the laboratory strain W303, while deletions of three other LAM genes — LAM1, LAM3, and LAM4 — does not provide any additional rescuing effect. The UPC2-1 mutation in the transcription factor UPC2 gene, which leads to the excessive accumulation of sterols in the cell, promotes cell survival in the presence of the pheromone and shows additivity with the LAM2 deletion. On the contrary, LAM2 deletion stimulates pheromone-induced cell death in the laboratory strain BY4741. We have found that the deletion of ergosterol biosynthesis genes ERG2 and ERG6 reduces the effect of LAM2 deletion. Deletion of LAM2 in the Aerg4 strain lacking the gene of the last step of ergosterol biosynthesis, significantly increased the proportion of dead cells and decreased the growth rate of the yeast suspension culture even in the absence of the pheromone. We suggest that the absence of the effect of LAM2 deletion in the Aerg6 and Aerg2 strains indicates the inability of Lam2p to transport some ergosterol biosynthesis intermediates, such as lanosterol. Taken together, our data suggest that the role of Lam proteins in the regulated death of yeast cells caused by the mating pheromone is due to their effect on the plasma membrane sterol composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

colony-forming unit

ER:

endoplasmic reticulum

PI:

propidium iodide

PM:

plasma membrane

RCD:

regulated cell death

References

  1. Nagata, S. (2018) Apoptosis and clearance of apoptotic cells, Annu. Rev. Immunol., 36, 489–517; doi: https://doi.org/10.1146/annurev-immunol-042617-053010.

    Article  CAS  Google Scholar 

  2. Fuchs, Y., and Steller, H. (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells, Nat. Rev. Mol. Cell Biol., 16, 329–344; doi: https://doi.org/10.1038/nrm3999.

    Article  CAS  Google Scholar 

  3. Carmona-Gutierrez, D., Bauer, M. A., Zimmermann, A., Aguilera, A., Austriaco, N., et al. (2018) Guidelines and recommendations on yeast cell death nomenclature, Microb. Cell Fact., 5, 4–31; doi: https://doi.org/10.15698/mic2018.01.607.

    Article  CAS  Google Scholar 

  4. Gordeeva, A. V., Labas, Y.A., and Zvyagilskaya, R. A. (2004) Apoptosis in unicellular organisms: mechanisms and evolution, Biochemistry, 69, 1055–1066; doi: https://doi.org/10.1023/b:biry.0000046879.54211.ab.

    CAS  PubMed  Google Scholar 

  5. Severin, F. F., Meer, M. V., Smirnova, E. A., Knorre, D. A., and Skulachev, V. P. (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta Mol. Cell Res., 1783, 1350–1353; doi: https://doi.org/10.1016/j.bbamcr.2008.02.001

    Article  CAS  Google Scholar 

  6. Carmona-Gutierrez, D., Eisenberg, T., Buttner, S., Meisinger, C., Kroemer, G., and Madeo, F. (2010) Apoptosis in yeast: triggers, pathways, subroutines, Cell Death Differ., 17, 763–773; doi: https://doi.org/10.1038/cdd.2009.219.

    Article  CAS  Google Scholar 

  7. Sukhanova, E. I., Rogov, A. G., Severin, F. F., and Zvyagilskaya, R. A. (2012) Phenoptosis in yeasts, Biochemistry, 77, 761–775; doi: https://doi.org/10.1134/S0006297912070097.

    CAS  PubMed  Google Scholar 

  8. Aouacheria, A., Cunningham, K. W., Hardwick, J. M., Palkova, Z., Powers, T., Severin, F. F., and Vachova, L. (2018) Comment on “Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death”, Science, 360; doi: https://doi.org/10.1126/science.aar6910

  9. Severin, F. F., and Hyman, A. A. (2002) Pheromone induces programmed cell death in S. cerevisiae, Curr. Biol., 12, R233–235; doi: https://doi.org/10.1016/j.cellbi.2005.10.023

    Article  CAS  Google Scholar 

  10. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 168, 257–269; doi: https://doi.org/10.1083/jcb.200408145.

    Article  CAS  Google Scholar 

  11. Ohsumi, Y., and Anraku, Y. (1985) Specific induction of Ca2+ transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone, alpha factor, J. Biol. Chem., 260, 10482–10486.

    CAS  PubMed  Google Scholar 

  12. Gupta, S. S., Ton, V.-K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R. (2003) Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis, J. Biol. Chem., 278, 28831–28839; doi: https://doi.org/10.1074/jbc.M303300200.

    Article  CAS  Google Scholar 

  13. Zhang, N.-N., Dudgeon, D. D., Paliwal, S., Levchenko, A., Grote, E., and Cunningham, K. W. (2006) Multiple signaling pathways regulate yeast cell death during the response to mating pheromones, Mol. Biol. Cell, 17, 3409–3422; doi: https://doi.org/10.1091/mbc.e06-03-0177.

    Article  CAS  Google Scholar 

  14. Sokolov, S., Knorre, D., Smirnova, E., Markova, O., Pozniakovsky, A., Skulachev, V., and Severin, F. (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification, Biochim. Biophys. Acta, 1757, 1366–1370; doi: https://doi.org/10.1016/j.bbabio.2006.07.005.

    Article  CAS  Google Scholar 

  15. Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderon-Norena, D. M., Cockcroft, S., Menon, A. K., and Levine, T. P. (2015) A new family of StART domain proteins at membrane contact sites has a role in ER—PM sterol transport, Elife, 4; doi: https://doi.org/10.7554/eLife.07253.

  16. Sandhu, J., Li, S., Fairall, L., Pfisterer, S. G., Gurnett, J. E., Xiao, X., Weston, T. A., Vashi, D., Ferrari, A., Orozco, J. L., Hartman, C. L., Strugatsky, D., Lee, S. D., He, C., Hong, C., Jiang, H., Bentolila, L. A., Gatta, A. T., Levine, T. P., Ferng, A., Lee, R., Ford, D. A., Young, S. G., Ikonen, E., Schwabe, J. W. R., and Tontonoz, P. (2018) Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells, Cell, 175, 514–529.e20; doi: https://doi.org/10.1016/j.cell.2018.08.033

    Article  CAS  Google Scholar 

  17. Huang, W., Zhang, Z., Han, X., Tang, J., Wang, J., Dong, S., and Wang, E. (2002) Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy, Biophys. J., 83, 3245–3255; doi: https://doi.org/10.1016/S0006-3495(02)75326-5.

    Article  CAS  Google Scholar 

  18. Sokolov, S., Vorobeva, M., Smirnova, E., Smirnova, A., Trushina, N., Galkina, K., Severin, F., and Knorre, D. (2020) LAM genes contribute to environmental stress tolerance but sensibilise yeast cells to azoles, Front. Microbiol., 11; doi: https://doi.org/10.3389/fmicb.2020.00038

  19. Alli-Balogun, G. O., and Levine, T. P. (2019) Regulation of targeting determinants in interorganelle communication, Curr. Opin. Cell Biol., 57, 106–114; doi: https://doi.org/10.1016/j.ceb.2018.12.010.

    Article  CAS  Google Scholar 

  20. Sokolov, S. S., Trushina, N. I., Severin, F. F., and Knorre, D. A. (2019) Ergosterol turnover in yeast: an interplay between biosynthesis and transport, Biochemistry (Moscow), 84, 346–357; doi: https://doi.org/10.1134/S0006297919040023.

    Article  CAS  Google Scholar 

  21. Herskowitz, I., and Jensen, R. E. (1991) [8] Putting the HO gene to work: practical uses for mating-type switching, in Methods in Enzymology, Academic Press, pp. 132–146; doi: https://doi.org/10.1016/0076-6879(91)94011-z

  22. Strauber, H., and Muller, S. (2010) Viability states of bacteria — specific mechanisms of selected probes, Cytometry A, 77, 623–634; doi: https://doi.org/10.1002/cyto.a.20920

    Article  Google Scholar 

  23. Moser, M. J., Geiser, J. R., and Davis, T. N. (1996) Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase, Mol. Cell. Biol., 16, 4824–4831; doi: https://doi.org/10.1128/mcb.16.9.4824.

    Article  CAS  Google Scholar 

  24. Crowley, J. H., Leak, F. W., Jr., Shianna, K. V., Tove, S., and Parks, L. W. (1998) A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae, J. Bacteriol., 180, 4177–4183.

    Article  CAS  Google Scholar 

  25. Joshua, I. M., and Hofken, T. (2017) From lipid homeostasis to differentiation: old and new functions of the zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2, Int. J. Mol. Sci., 18; doi: https://doi.org/10.3390/ijms18040772

  26. Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 14, 1471–1510; doi: https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  27. Knorre, D. A., Ojovan, S. M., Saprunova, V. B., Sokolov, S. S., Bakeeva, L. E., and Severin, F. F. (2008) Mitochondrial matrix fragmentation as a protection mechanism of yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 73, 1254–1259; doi: https://doi.org/10.1134/s0006297908110126

    Article  CAS  Google Scholar 

  28. De Godoy, L. M. F., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C., and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast, Nature, 455, 1251–1254; doi: https://doi.org/10.1134/s0006297908110126.

    Article  CAS  Google Scholar 

  29. Peng, M., Taouatas, N., Cappadona, S., van Breukelen, B., Mohammed, S., Scholten, A., and Heck, A. J. R. (2012) Protease bias in absolute protein quantitation, Nat. Methods, 9, 524–525; doi: https://doi.org/10.1038/nmeth.2031.

    Article  CAS  Google Scholar 

  30. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N., and Mann, M. (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells, Nat. Methods, 11, 319–324; doi: https://doi.org/10.1038/nmeth.2834.

    Article  CAS  Google Scholar 

  31. Maresova, L., Muend, S., Zhang, Y.-Q., Sychrova, H., and Rao, R. (2009) Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone, J. Biol. Chem., 284, 2795–2802; doi: https://doi.org/10.1074/jbc.M806693200.

    Article  CAS  Google Scholar 

  32. Zweytick, D., Hrastnik, C., Kohlwein, S. D., and Daum, G. (2000) Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, erg4p, from the yeast Saccharomyces cerevisiae, FEBS Lett., 470, 83–87; doi: https://doi.org/10.1016/s0014-5793(00)01290-4

    Article  CAS  Google Scholar 

  33. Liu, G., Chen, Y., Faergeman, N. J., and Nielsen, J. (2017) Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses, FEMS Yeast Res., 17; doi: https://doi.org/10.1093/femsyr/fox063

  34. Parks, L. W., and Casey, W. M. (1995) Physiological implications of sterol biosynthesis in yeast, Annu. Rev. Microbiol., 49, 95–116; doi: https://doi.org/10.1146/annurev.mi.49.100195.000523.

    Article  CAS  Google Scholar 

  35. Jimenez-Munguia, I., Volynsky, P. E., Batishchev, O. V., Akimov, S. A., Korshunova, G. A., Smirnova, E. A., Knorre, D. A., Sokolov, S. S., and Severin, F. F. (2019) Effects of sterols on the interaction of SDS, benzalkonium chloride, and a novel compound, Kor105, with membranes, Biomolecules, 9; doi: https://doi.org/10.3390/biom9100627

  36. Hofken, T. (2017) Ecm22 and Upc2 regulate yeast mating through control of expression of the mating genes PRM1 and PRM4, Biochem. Biophys. Res. Commun., 493, 1485–1490; doi: https://doi.org/10.1016/j.bbrc.2017.10.005.

    Article  CAS  Google Scholar 

  37. Kodedova, M., and Sychrova, H. (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae, PLoS One, 10, e0139306; doi: https://doi.org/10.1371/journal.pone.0139306

    Article  Google Scholar 

  38. Hongay, C., Jia, N., Bard, M., and Winston, F. (2002) Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae, EMBO J., 21, 4114–4124; doi: https://doi.org/10.1093/emboj/cdf415

    Article  CAS  Google Scholar 

  39. Zhang, Y.-Q., Gamarra, S., Garcia-Effron, G., Park, S., Perlin, D. S., and Rao, R. (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs, PLoS Pathog., 6, e1000939; doi: https://doi.org/10.1371/journal.ppat.1000939

    Article  Google Scholar 

Download references

Acknowledgements

We thank Vasilina Efimova for participating in the generation of the double AergAlaml mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sokolov.

Additional information

Published in Russian in Biokhimiya, 2020, Vol. 85, No. 3, pp. 348–359.

Funding

This work was supported by the Russian Science Foundation (project 18-14-00151) (Figs. 1, 2, and 4–6) and Russian Foundation for Basic Research (project 18-04-01183) (Fig. 3).

Conflict of interest

The authors declare no conflict of interest in financial or any other sphere.

Ethical approval

This article does not contain description of studies involving humans or animals as research subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.S., Galkina, K.V., Litvinova, E.A. et al. The Role of LAM Genes in the Pheromone-Induced Cell Death of S. cerevisiae Yeast. Biochemistry Moscow 85, 300–309 (2020). https://doi.org/10.1134/S0006297920030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920030050

Keywords

Navigation