Skip to main content
Log in

Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Multiphoton microscopy (MPM) is a method of molecular imaging and specifically of intravital imaging that is characterized by high spatial resolution in combination with a greater depth of penetration into the tissue. MPM is a multimodal method based on detection of nonlinear optical signals–multiphoton fluorescence and optical harmonics–and also allows imaging with the use of the parameters of fluorescence decay kinetics. This review describes and discusses photophysical processes within major reporter molecules used in MPM with endogenous contrasts and summarizes several modern experiments that illustrate the capabilities of label-free MPM for molecular imaging of biochemical processes in connective tissue and cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

autofluorescence

AGEs:

advanced glycation endproducts

CARS:

coherent anti-Stokes Raman scattering

FAD:

flavin adenine dinucleotide

FLIM:

fluorescence lifetime imaging

FP:

flavoprotein

IR:

infrared

MI:

metabolic imaging

MPM:

multiphoton microscopy

NAD:

nicotinamide adenine dinucleotide

NADF/NADB:

free/bound form of NAD

NADP:

nicotinamide adenine dinucleotide phosphate

OP:

oxidative phosphorylation

ROS:

reactive oxygen species

SC:

stem cells

SHG:

second harmonic generation

TCSPC:

time-correlated single photon counting

THG:

third harmonic generation

TP:

two-photon

UV:

ultraviolet

References

  1. Konig, K., and Riemann, I. (2003) High–resolution multi–photon tomography of human skin with subcellular spatial resolution and picosecond time resolution, J. Biomed. Opt., 8, 432–439.

    Article  PubMed  Google Scholar 

  2. Marcu, L., French, P. M. W., and Elson, D. S. (2014) Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics, CRC Press/Taylor & Francis Group, Boca Raton.

    Book  Google Scholar 

  3. Becker, W. (2012) Fluorescence lifetime imaging–tech–niques and applications, J. Microsc., 247, 119–136.

    Article  CAS  PubMed  Google Scholar 

  4. Helmchen, F., and Denk, W. (2005) Deep tissue two–pho–ton microscopy, Nat. Methods, 2, 932.

    Article  CAS  PubMed  Google Scholar 

  5. So, P. T. C., Dong, C. Y., Masters, B. R., and Berland, K. M. (2000) Two–photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng., 2, 399–429.

    Article  CAS  PubMed  Google Scholar 

  6. Phan, T. G., and Bullen, A. (2010) Practical intravital two–photon microscopy for immunological research: faster, brighter, deeper, Immunol. Cell. Biol., 88, 438–44.

    Article  PubMed  Google Scholar 

  7. Xu, C., and Zipfel, W. R. (2015) Multiphoton excitation of fluorescent probes, Cold Spring Harb. Protoc., 2015, doi: 10.1101/pdb.top086116.

    Book  Google Scholar 

  8. Zubova, N. N., and Savitzky, A. P. (2005) Molecular cellu–lar sensors, based on colorful fluorescent proteins I: pH sensors, ions of Cl–, Ca2+, Zn2+, Cu2+, Uspekhi Biol. Khim., 45, 391–454.

    Google Scholar 

  9. Mayevsky, A., and Rogatsky, G. G. (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies, Am. J. Physiol. Cell Physiol., 292, C615–640.

    Google Scholar 

  10. Kolenc, O. I., and Quinn, K. P. (2018) Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD, Antioxid. Redox Signal, doi: 10.1089/ars.2017.7451.

    Google Scholar 

  11. Obeidy, P., Tong, P. L., and Weninger, W. (2018) Research techniques made simple: two–photon intravital imaging of the skin, J. Invest. Dermatol., 138, 720–725.

    Article  CAS  PubMed  Google Scholar 

  12. Croce, A. C., and Bottiroli, G. (2017) Autofluorescence spectroscopy for monitoring metabolism in animal cells and tissues, Methods Mol. Biol., 1560, 15–43.

    Article  CAS  PubMed  Google Scholar 

  13. Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy, 3rd Edn., Springer, New York.

    Book  Google Scholar 

  14. Berezin, M. Y., and Achilefu, S. (2010) Fluorescence life–time measurements and biological imaging, Chem. Rev., 110, 2641–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavone, F. S., and Campagnola, P. J. (2014) Second Harmonic Generation Imaging, CRC Press Taylor & Francis, Boca Raton.

    Google Scholar 

  16. Akhmanov, S. A., and Nikitin, S. Yu. (2004) Physical Optics [in Russian], MSU Publishers, Moscow.

    Google Scholar 

  17. Shen, Y.–R. (1984) The Principles of Nonlinear Optics, Wiley–Interscience, New York.

    Google Scholar 

  18. Sdobnov, A. Y., Darvin, M. E., Genina, E. A., Bashkatov, A. N., Lademann, J., and Tuchin, V. V. (2018) Recent progress in tissue optical clearing for spectroscopic application, Spectrochim. Acta A Mol. Biomol. Spectrosc., 197, 216–229.

    Article  CAS  PubMed  Google Scholar 

  19. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J., and Charpak, S. (2001) Two–photon microscopy in brain tissue: parameters influencing the imaging depth, J. Neurosci. Methods, 111, 29–37.

    Article  CAS  PubMed  Google Scholar 

  20. Oheim, M., Michael, D. J., Geisbauer, M., Madsen, D., and Chow, R. H. (2006) Principles of two–photon excita–tion fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug Deliv. Rev., 58, 788–808.

    Article  CAS  PubMed  Google Scholar 

  21. Boyd, R. W. (2003) Nonlinear Optics, Elsevier, Amsterdam.

    Google Scholar 

  22. Steinfeld, J. I. (2012) Molecules and Radiation: an Introduction to Modern Molecular Spectroscopy, Courier Corporation, North Chelmsford.

    Google Scholar 

  23. Campagnola, P. J., and Loew, L. M. (2003) Second–har–monic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nat. Biotechnol., 21, 1356–1360.

    Article  CAS  PubMed  Google Scholar 

  24. Masters, B. R., and So, P. (2008) Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, Oxford.

    Google Scholar 

  25. Muller, M., and Zumbusch, A. (2007) Coherent anti–Stokes Raman scattering microscopy, ChemPhysChem, 8, 2156–2170.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, J.–X., and Xie, X. S. (2004) Coherent anti–Stokes Raman scattering microscopy: instrumentation, theory, and applications, J. Phys. Chem. B, 108, 827–840.

    Article  CAS  Google Scholar 

  27. Xie, X. S., Cheng, J.–X., and Potma, E. (2006) Coherent anti–Stokes Raman scattering microscopy, in Handbook of Biological Confocal Microscopy (Pawley, J., ed.), Springer, Boston, pp. 595–606.

    Google Scholar 

  28. Bashkatov, A. N., Genina, E. A., and Tuchin, V. V. (2011) Optical properties of skin, subcutaneous, and muscle tis–sues: a review, J. Innov. Opt. Health Sci., 4, 9–38.

    Article  Google Scholar 

  29. Xu, C., Zipfel, W., Shear, J. B., Williams, R. M., and Webb, W. W. (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA, 93, 10763–10768.

    Article  CAS  PubMed  Google Scholar 

  30. Hopt, A., and Neher, E. (2001) Highly nonlinear photo–damage in two–photon fluorescence microscopy, Biophys. J., 80, 2029–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zipfel, W. R., Williams, R. M., and Webb, W. W. (2003) Nonlinear magic: multiphoton microscopy in the bio–sciences, Nat. Biotechnol., 21, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  32. Balu, M., Baldacchini, T., Carter, J. L., Krasieva, T. B., Zadoyan, R., and Tromberg, B. J. (2009) Effect of excita–tion wavelength on penetration depth in nonlinear optical microscopy of turbid media, J. Biomed. Opt., 14, 010508.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kobat, D., Horton, N. G., and Xu, C. (2011) In vivo two–photon microscopy to 1.6–mm depth in mouse cortex, J. Biomed. Opt., 16, 106014.

    Article  PubMed  Google Scholar 

  34. Theer, P., and Denk, W. (2006) On the fundamental imag–ing–depth limit in two–photon microscopy, JOSA A, 23, 3139–3149.

    Article  PubMed  Google Scholar 

  35. Majewska, A., Yiu, G., and Yuste, R. (2000) A custom–made two–photon microscope and deconvolution system, Pflugers Arch., 441, 398–408.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, Q. T., Callamaras, N., Hsieh, C., and Parker, I. (2001) Construction of a two–photon microscope for video–rate Ca2+ imaging, Cell Calcium, 30, 383–393.

    Article  CAS  PubMed  Google Scholar 

  37. Periasamy, A., and Clegg, R. M. (2009) FLIM Microscopy in Biology and Medicine, Chapman and Hall/CRC, New York.

    Book  Google Scholar 

  38. Kollner, M., and Wolfrum, J. (1992) How many photons are necessary for fluorescence–lifetime measurements? Chem. Phys. Lett., 200, 199–204.

    Article  Google Scholar 

  39. Digman, M. A., Caiolfa, V. R., Zamai, M., and Gratton, E. (2008) The phasor approach to fluorescence lifetime imag–ing analysis, Biophys. J., 94, L14–L16.

    Google Scholar 

  40. Le Marois, A., Labouesse, S., Suhling, K., and Heintzmann, R. (2017) Noise–corrected principal compo–nent analysis of fluorescence lifetime imaging data, J. Biophotonics, 10, 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  41. Leray, A., Padilla–Parra, S., Roul, J., Heliot, L., and Tramier, M. (2013) Spatio–temporal quantification of FRET in living cells by fast time–domain FLIM: a compar–ative study of non–fitting methods, PloS One, 8, e69335.

    Google Scholar 

  42. Stringari, C., Cinquin, A., Cinquin, O., Digman, M. A., Donovan, P. J., and Gratton, E. (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue, Proc. Natl. Acad. Sci. USA, 108, 13582–13587.

    Article  PubMed  Google Scholar 

  43. Ranjit, S., Dvornikov, A., Stakic, M., Hong, S. H., Levi, M., Evans, R. M., and Gratton, E. (2015) Imaging fibrosis and separating collagens using second harmonic generation and phasor approach to fluorescence lifetime imaging, Sci. Rep., 5, 13378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhdanova, N. G., Shirshin, E. A., Maksimov, E. G., Panchishin, I. M., Saletsky, A. M., and Fadeev, V. V. (2015) Tyrosine fluorescence probing of the surfactant–induced conformational changes of albumin, Photochem. Photobiol. Sci., 14, 897–908.

    Article  CAS  PubMed  Google Scholar 

  45. Li, C., Pistillides, C., Runnels, J. M., Cote, D., and Li, C. (2010) Multiphoton microscopy of live tissues with ultravi–olet autofluorescence, IEEE J. Sel. Top. Quantum Electron., 16, 516–523.

    Article  CAS  Google Scholar 

  46. Li, C., Pastila, R. K., Pitsillides, C., Runnels, J. M., Puoris’haag, M., Cote, D., and Lin, C. P. (2010) Imaging leukocyte trafficking in vivo with two–photon–excited endogenous tryptophan fluorescence, Opt. Express, 18, 988–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alam, S. R., Wallrabe, H., Svindrych, Z., Chaudhary, A. K., Christopher, K. G., Chandra, D., and Periasamy, A. (2017) Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and tryptophan FLIM assay, Sci. Rep., 7, 10451.

    PubMed  Google Scholar 

  48. Jyothikumar, V., Sun, Y., and Periasamy, A. (2013) Investigation of tryptophan–NADH interactions in live human cells using three–photon fluorescence lifetime imaging and Forster resonance energy transfer microscopy, J. Biomed. Opt., 18, 060501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maiti, S., Shear, J. B., Williams, R. M., Zipfel, W. R., and Webb, W. W. (1997) Measuring serotonin distribution in live cells with three–photon excitation, Science, 275, 530–532.

    Article  CAS  PubMed  Google Scholar 

  50. Vivian, J. T., and Callis, P. R. (2001) Mechanisms of tryp–tophan fluorescence shifts in proteins, Biophys. J., 80, 2093–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirshin, E. A., Gurfinkel, Y. I., Priezzhev, A. V., Fadeev, V. V., Lademann, J., and Darvin, M. E. (2017) Two–photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structur–al proteins localization, Sci. Rep., 7, 1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Borisova, E., Angelova, L., and Pavlova, E. (2014) Endogenous and exogenous fluorescence skin cancer diag–nostics for clinical applications, IEEE J. Sel. Top. Quantum Electron., 20, 7100412.

    Article  CAS  Google Scholar 

  53. Palero, J. A., de Bruijn, H. S., van der Ploeg van den Heuvel, A., Sterenborg, H. J., and Gerritsen, H. C. (2007) Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues, Biophys. J., 93, 992–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Voloshina, O. V., Shirshin, E. A., Lademann, J., Fadeev, V. V., and Darvin, M. E. (2017) Fluorescence detection of protein content in house dust: the possible role of keratin, Indoor Air, 27, 377–385.

    Article  CAS  PubMed  Google Scholar 

  55. Pena, A., Strupler, M., Boulesteix, T., and Schanne–Klein, M. (2005) Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy, Opt. Express, 13, 6268–6274.

    Article  CAS  PubMed  Google Scholar 

  56. Mulder, D. J., Water, T. V., Lutgers, H. L., Graaff, R., Gans, R. O., Zijlstra, F., and Smit, A. J. (2006) Skin auto–fluorescence, a novel marker for glycemic and oxidative stress–derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations, Diabetes Technol. Ther., 8, 523–535.

    Article  CAS  PubMed  Google Scholar 

  57. Ghazaryan, A. A., Hu, P. S., Chen, S. J., Tan, H. Y., and Dong, C. Y. (2012) Spatial and temporal analysis of skin glycation by the use of multiphoton microscopy and spec–troscopy, J. Dermatol. Sci., 65, 189–195.

    Article  CAS  PubMed  Google Scholar 

  58. Blacker, T. S., Mann, Z. F., Gale, J. E., Ziegler, M., Bain, A. J., Szabadkai, G., and Duchen, M. R. (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM, Nat. Commun., 5, 3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, S., Heikal, A. A., and Webb, W. W. (2002) Two–photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein, Biophys. J., 82, 2811–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, Q., and Heikal, A. A. (2009) Two–photon autofluores–cence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single–cell level, J. Photochem. Photobiol. B, 95, 46–57.

    Article  CAS  PubMed  Google Scholar 

  61. Blacker, T. S., and Duchen, M. R. (2016) Investigating mitochondrial redox state using NADH and NADPH auto–fluorescence, Free Radic. Biol. Med., 100, 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Galban, J., Sanz–Vicente, I., Navarro, J., and de Marcos, S. (2016) The intrinsic fluorescence of FAD and its appli–cation in analytical chemistry: a review, Methods Appl. Fluoresc., 4, 042005.

    Article  CAS  PubMed  Google Scholar 

  63. Dimitrow, E., Riemann, I., Ehlers, A., Koehler, M. J., Norgauer, J., Elsner, P., Konig, K., and Kaatz, M. (2009) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis, Exp. Dermatol., 18, 509–515.

    Article  PubMed  Google Scholar 

  64. Teuchner, K., Freyer, W., Leupold, D., Volkmer, A., Birch, D. J., Altmeyer, P., Stucker, M., and Hoffmann, K. (1999) Femtosecond two–photon excited fluorescence of melanin, Photochem. Photobiol., 70, 146–151.

    CAS  PubMed  Google Scholar 

  65. Rice, W. L., Kaplan, D. L., and Georgakoudi, I. (2010) Two–photon microscopy for non–invasive, quantitative monitoring of stem cell differentiation, PLoS One, 5, e10075.

    Google Scholar 

  66. Chen, C., Liang, Z., Zhou, B., Li, X., Lui, C., Ip, N. Y., and Qu, J. (2018) In vivo near–infrared two–photon imag–ing of amyloid plaques in deep brain of Alzheimer’s disease mouse model, ACS Chem. Neurosci., doi: 10.1021/acschemneuro.8b00306.

    Google Scholar 

  67. Sinichkin, Y. P., Utz, S. R., Mavliutov, A. H., and Pilipenko, H. A. (1998) In vivo fluorescence spectroscopy of the human skin: experiments and models, J. Biomed. Opt., 3, 201–211.

    Article  CAS  PubMed  Google Scholar 

  68. Robins, S. P. (1982) Analysis of the crosslinking compo–nents in collagen and elastin, Methods Biochem. Anal., 28, 329–379.

    CAS  PubMed  Google Scholar 

  69. Deyl, Z., Macek, K., Adam, M., and Vancikova, O. (1980) Studies on the chemical nature of elastin fluorescence, Biochim. Biophys. Acta, 625, 248–254.

    Article  CAS  PubMed  Google Scholar 

  70. Stamatas, G. N., Estanislao, R. B., Suero, M., Rivera, Z. S., Li, J., Khaiat, A., and Kollias, N. (2006) Facial skin flu–orescence as a marker of the skin’s response to chronic environmental insults and its dependence on age, Br. J. Dermatol., 154, 125–132.

    Article  CAS  PubMed  Google Scholar 

  71. Malencik, D. A., and Anderson, S. R. (2003) Dityrosine as a product of oxidative stress and fluorescent probe, Amino Acids, 25, 233–247.

    Article  CAS  PubMed  Google Scholar 

  72. Sterenborg, N. J., Thomsen, S., Jacques, S. L., Duvic, M., Motamedi, M., and Wagner, R. F., Jr. (1995) In vivo fluo–rescence spectroscopy and imaging of human skin tumors, Dermatol. Surg., 21, 821–822.

    Article  CAS  PubMed  Google Scholar 

  73. Marcu, L., Cohen, D., Maarek, J.–M., and Grundfest, W. (2000) Characterization of type I, II, III, IV, and V colla–gens by time–resolved laser–induced fluorescence spec–troscopy, Proc. SPIE, 3917, 93–101.

    CAS  Google Scholar 

  74. Choe, C., Schleusener, J., Lademann, J., and Darvin, M. E. (2017) Keratin–water–NMF interaction as a three layer model in the human stratum corneum using in vivo confo–cal Raman microscopy, Sci. Rep., 7, 15900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gkogkolou, P., and Bohm, M. (2012) Advanced glycation end products: key players in skin aging? Dermato–endocrinology, 4, 259–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dyer, D. G., Dunn, J. A., Thorpe, S. R., Bailie, K. E., Lyons, T. J., McCance, D. R., and Baynes, J. W. (1993) Accumulation of Maillard reaction products in skin colla–gen in diabetes and aging, J. Clin. Invest., 91, 2463–2469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dyer, D. G., Blackledge, J. A., Thorpe, S. R., and Baynes, J. W. (1991) Formation of pentosidine during nonenzymat–ic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosi–dine in vivo, J. Biol. Chem., 266, 11654–11660.

    CAS  PubMed  Google Scholar 

  78. Monnier, V. M., Kohn, R. R., and Cerami, A. (1984) Accelerated age–related browning of human collagen in diabetes mellitus, Proc. Natl. Acad. Sci. USA, 81, 583–587.

    Article  CAS  PubMed  Google Scholar 

  79. Kim, B. M., Eichler, J., Reiser, K. M., Rubenchik, A. M., and Da Silva, L. B. (2000) Collagen structure and nonlin–ear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity, Lasers Surg. Med., 27, 329–335.

    Article  CAS  PubMed  Google Scholar 

  80. Tseng, J. Y., Ghazaryan, A. A., Lo, W., Chen, Y. F., Hovhannisyan, V., Chen, S. J., Tan, H. Y., and Dong, C. Y. (2010) Multiphoton spectral microscopy for imaging and quan–tification of tissue glycation, Biomed. Opt. Express, 2, 218–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dyer, J. M., Bringans, S. D., and Bryson, W. G. (2006) Characterisation of photo–oxidation products within pho–toyellowed wool proteins: tryptophan and tyrosine derived chromophores, Photochem. Photobiol. Sci., 5, 698–706.

    Article  CAS  PubMed  Google Scholar 

  82. Pattison, D. I., Rahmanto, A. S., and Davies, M. J. (2012) Photo–oxidation of proteins, Photochem. Photobiol. Sci., 11, 38–53.

    Article  CAS  PubMed  Google Scholar 

  83. Balasubramanian, D., and Kanwar, R. (2002) Molecular pathology of dityrosine cross–links in proteins: structural and functional analysis of four proteins, Mol. Cell. Biochem., 234–235, 27–38.

    Article  PubMed  Google Scholar 

  84. Soskic, V., Groebe, K., and Schrattenholz, A. (2008) Nonenzymatic posttranslational protein modifications in ageing, Exp. Gerontol., 43, 247–257.

    Article  CAS  PubMed  Google Scholar 

  85. Tikhonova, T. N., Rovnyagina, N. R., Zherebker, A. Y., Sluchanko, N. N., Rubekina, A. A., Orekhov, A. S., Nikolaev, E. N., Fadeev, V. V., Uversky, V. N., and Shirshin, E. A. (2018) Dissection of the deep–blue autofluorescence changes accompanying amyloid fibrillation, Arch. Biochem. Biophys., 651, 13–20.

    Article  CAS  PubMed  Google Scholar 

  86. Pinotsi, D., Buell, A. K., Dobson, C. M., Kaminski Schierle, G. S., and Kaminski, C. F. (2013) A label–free, quantitative assay of amyloid fibril growth based on intrin–sic fluorescence, Chembiochem, 14, 846–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shukla, A., Mukherjee, S., Sharma, S., Agrawal, V., Radha Kishan, K. V., and Guptasarma, P. (2004) A novel UV laser–induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transi–tions of peptide electrons delocalized through hydrogen bonding? Arch. Biochem. Biophys., 428, 144–153.

    Article  CAS  PubMed  Google Scholar 

  88. Shaham–Niv, S., Arnon, Z. A., Sade, D., Lichtenstein, A., Shirshin, E. A., Kolusheva, S., and Gazit, E. (2018) Intrinsic fluorescence of metabolite amyloids allows label–free monitoring of their formation and dynamics in live cells, Angew. Chem. Int. Ed. Engl., 57, 12444–12447.

    Article  CAS  PubMed  Google Scholar 

  89. Pinotsi, D., Grisanti, L., Mahou, P., Gebauer, R., Kaminski, C. F., Hassanali, A., and Kaminski Schierle, G. S. (2016) Proton transfer and structure–specific fluores–cence in hydrogen bond–rich protein structures, J. Am. Chem. Soc., 138, 3046–3057.

    Article  CAS  PubMed  Google Scholar 

  90. Niyangoda, C., Miti, T., Breydo, L., Uversky, V., and Muschol, M. (2017) Carbonyl–based blue autofluorescence of proteins and amino acids, PLoS One, 12, e0176983.

    Book  Google Scholar 

  91. Permyakov, E. A., Permyakov, S. E., Deikus, G. Y., Morozova–Roche, L. A., Grishchenko, V. M., Kalinichenko, L. P., and Uversky, V. N. (2003) Ultraviolet illumination–induced reduction of alpha–lactalbumin disulfide bridges, Proteins, 51, 498–503.

    Article  CAS  PubMed  Google Scholar 

  92. Ying, W. (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences, Antioxid. Redox. Signal., 10, 179–206.

    Article  CAS  PubMed  Google Scholar 

  93. Blacker, T. S., Berecz, T., Duchen, M. R., and Szabadkai, G. (2017) Assessment of cellular redox state using NAD(P)H fluorescence intensity and lifetime, Bio Protoc., 7, e2105.

    Book  Google Scholar 

  94. Vishwasrao, H. D., Heikal, A. A., Kasischke, K. A., and Webb, W. W. (2005) Conformational dependence of intra–cellular NADH on metabolic state revealed by associated fluorescence anisotropy, J. Biol. Chem., 280, 25119–25126.

    Article  CAS  PubMed  Google Scholar 

  95. Visser, A. J. W. G., and van Hoek, A. (1981) The fluores–cence decay of reduced nicotinamides in aqueous solution after excitation with a UV–mode locked Ar ion laser, Photochem. Photobiol., 33, 35–40.

    Article  CAS  Google Scholar 

  96. Blacker, T., Marsh, R. J., Duchen, M. R., and Bain, A. J. (2013) Activated barrier crossing dynamics in the non–radiative decay of NADH and NADPH, Chem. Phys., 422, 184–194.

    Article  CAS  Google Scholar 

  97. Skala, M. C., Riching, K. M., Gendron–Fitzpatrick, A., Eickhoff, J., Eliceiri, K. W., White, J. G., and Ramanujam, N. (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proc. Natl. Acad. Sci. USA, 104, 19494–19499.

    Article  PubMed  Google Scholar 

  98. Kunz, W. S., and Kunz, W. (1985) Contribution of differ–ent enzymes to flavoprotein fluorescence of isolated rat liver mitochondria, Biochim. Biophys. Acta, 841, 237–246.

    Article  CAS  PubMed  Google Scholar 

  99. Mataga, N., Chosrowjan, H., and Shibata, Y. (2000) Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace, J. Phys. Chem. B, 104, 10667–10677.

    Article  CAS  Google Scholar 

  100. Lukina, M. M., Shirmanova, M. V., Sergeeva, T. F., and Zagaynova, E. V. (2016) Metabolic imaging in the study of oncological processes (review), Sovrem. Tekhnol. Med., 8, 113–126.

    Article  Google Scholar 

  101. Miranda–Lorenzo, I., Dorado, J., Lonardo, E., Alcala, S., Serrano, A. G., Clausell–Tormos, J., Cioffi, M., Megias, D., Zagorac, S., Balic, A., Hidalgo, M., Erkan, M., Kleeff, J., Scarpa, A., Sainz, B., Jr., and Heeschen, C. (2014) Intracellular autofluorescence: a biomarker for epithelial cancer stem cells, Nat. Methods, 11, 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  102. Solano, F. (2014) Melanins: skin pigments and much more–types, structural models, biological functions, and for–mation, New J. Sci., 2014, 498276.

    Article  CAS  Google Scholar 

  103. Huang, Z., Zeng, H., Hamzavi, I., Alajlan, A., Tan, E., McLean, D. I., and Lui, H. (2006) Cutaneous melanin exhibiting fluorescence emission under near–infrared light excitation, J. Biomed. Opt., 11, 34010.

    Article  CAS  PubMed  Google Scholar 

  104. Arginelli, F., Manfredini, M., Bassoli, S., Dunsby, C., French, P., Konig, K., Magnoni, C., Ponti, G., Talbot, C., and Seidenari, S. (2013) High resolution diagnosis of com–mon nevi by multiphoton laser tomography and fluores–cence lifetime imaging, Skin Res. Technol., 19, 194–204.

    Article  PubMed  Google Scholar 

  105. Wolman, M. (1980) Lipid pigments (chromolipids): their origin, nature, and significance, Pathobiol. Annu., 10, 253–267.

    CAS  PubMed  Google Scholar 

  106. Terman, A., Kurz, T., Navratil, M., Arriaga, E. A., and Brunk, U. T. (2010) Mitochondrial turnover and aging of long–lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging, Antioxid. Redox Signal., 12, 503–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Di Guardo, G. (2015) Lipofuscin, lipofuscin–like pig–ments and autofluorescence, Eur. J. Histochem., 59, 2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yin, D. Z., and Brunk, U. T. (1991) Microfluorometric and fluorometric lipofuscin spectral discrepancies: a con–centration–dependent metachromatic effect? Mech. Ageing Dev., 59, 95–109.

    Article  CAS  PubMed  Google Scholar 

  109. Schnell, S. A., Staines, W. A., and Wessendorf, M. W. (1999) Reduction of lipofuscin–like autofluorescence in fluorescently labeled tissue, J Histochem. Cytochem., 47, 719–730.

    Article  CAS  PubMed  Google Scholar 

  110. Cicchi, R., Vogler, N., Kapsokalyvas, D., Dietzek, B., Popp, J., and Pavone, F. S. (2013) From molecular struc–ture to tissue architecture: collagen organization probed by SHG microscopy, J. Biophotonics, 6, 129–142.

    Article  CAS  PubMed  Google Scholar 

  111. Darvin, M. E., Konig, K., Kellner–Hoefer, M., Breunig, H. G., Werncke, W., Meinke, M. C., Patzelt, A., Sterry, W., and Lademann, J. (2012) Safety assessment by multi–photon fluorescence/second harmonic generation/hyper–Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products, Skin Pharmacol. Physiol., 25, 219–226.

    Article  CAS  PubMed  Google Scholar 

  112. Chang, T., Zimmerley, M. S., Quinn, K. P., Lamarre–Jouenne, I., Kaplan, D. L., Beaurepaire, E., and Georgakoudi, I. (2013) Non–invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label–free multiphoton microscopy, Biomaterials, 34, 8607–8616.

    Article  CAS  PubMed  Google Scholar 

  113. Weigelin, B., Bakker, G. J., and Friedl, P. (2016) Third harmonic generation microscopy of cells and tissue organ–ization, J. Cell Sci., 129, 245–255.

    Article  CAS  PubMed  Google Scholar 

  114. Debarre, D., Supatto, W., Pena, A. M., Fabre, A., Tordjmann, T., Combettes, L., Schanne–Klein, M. C., and Beaurepaire, E. (2006) Imaging lipid bodies in cells and tissues using third–harmonic generation microscopy, Nat. Methods, 3, 47–53.

    Article  CAS  PubMed  Google Scholar 

  115. You, S., Tu, H., Chaney, E. J., Sun, Y., Zhao, Y., Bower, A. J., Liu, Y. Z., Marjanovic, M., Sinha, S., Pu, Y., and Boppart, S. A. (2018) Intravital imaging by simultaneous label–free autofluorescence–multiharmonic microscopy, Nat. Commun., 9, 2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., and Johnson, M. L. (1992) Fluorescence lifetime imaging of free and protein–bound NADH, Proc. Natl. Acad. Sci. USA, 89, 1271–1275.

    Article  CAS  PubMed  Google Scholar 

  117. Walsh, A. J., Shah, A. T., Sharick, J. T., and Skala, M. C. (2015) Fluorescence lifetime measurements of NAD(P)H in live cells and tissue, in Advanced Time–Correlated Single Photon Counting Applications (Becker, W., ed.) Springer International Publishing, Cham, pp. 435–456.

    Google Scholar 

  118. Lopez–Lazaro, M. (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med. Chem., 8, 305–312.

    Article  PubMed  Google Scholar 

  119. Berridge, M. V., Herst, P. M., and Tan, A. S. (2010) Metabolic flexibility and cell hierarchy in metastatic can–cer, Mitochondrion, 10, 584–588.

    Article  CAS  PubMed  Google Scholar 

  120. Datta, R., Alfonso–Garcia, A., Cinco, R., and Gratton, E. (2015) Fluorescence lifetime imaging of endogenous bio–marker of oxidative stress, Sci. Rep., 5, 9848.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stringari, C., Edwards, R. A., Pate, K. T., Waterman, M. L., Donovan, P. J., and Gratton, E. (2012) Metabolic tra–jectory of cellular differentiation in small intestine by pha–sor fluorescence lifetime microscopy of NADH, Sci. Rep., 2, 568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stringari, C., Sierra, R., Donovan, P. J., and Gratton, E. (2012) Label–free separation of human embryonic stem cells and their differentiating progenies by phasor fluores–cence lifetime microscopy, J. Biomed. Opt., 17, 046012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stringari, C., Nourse, J. L., Flanagan, L. A., and Gratton, E. (2012) Phasor fluorescence lifetime microscopy of free and protein–bound NADH reveals neural stem cell differ–entiation potential, PLoS One, 7, e48014.

    Google Scholar 

  124. Wright, B. K., Andrews, L. M., Markham, J., Jones, M. R., Stringari, C., Digman, M. A., and Gratton, E. (2012) NADH distribution in live progenitor stem cells by phasor–fluores–cence lifetime image microscopy, Biophys. J., 103, L7–9.

    Google Scholar 

  125. Kim, J. H., Cho, E. J., Kim, S. T., and Youn, H. D. (2005) CtBP represses p300–mediated transcriptional activation by direct association with its bromodomain, Nat. Struct. Mol. Biol., 12, 423–428.

    Article  CAS  PubMed  Google Scholar 

  126. Wright, B. K., Andrews, L. M., Jones, M. R., Stringari, C., Digman, M. A., and Gratton, E. (2012) Phasor–FLIM analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells, Microsc. Res. Tech., 75, 1717–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stringari, C., Wang, H., Geyfman, M., Crosignani, V., Kumar, V., Takahashi, J. S., Andersen, B., and Gratton, E. (2015) In vivo single–cell detection of metabolic oscilla–tions in stem cells, Cell Rep., 10, 1–7.

    Article  CAS  PubMed  Google Scholar 

  128. Datta, R., Heylman, C., George, S. C., and Gratton, E. (2016) Label–free imaging of metabolism and oxidative stress in human induced pluripotent stem cell–derived car–diomyocytes, Biomed. Opt. Express, 7, 1690–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Santin, G., Paulis, M., Vezzoni, P., Pacchiana, G., Bottiroli, G., and Croce, A. C. (2013) Autofluorescence properties of murine embryonic stem cells during spontaneous differenti–ation phases, Lasers Surg. Med., 45, 597–607.

    Article  PubMed  Google Scholar 

  130. Osellame, L. D., Blacker, T. S., and Duchen, M. R. (2012) Cellular and molecular mechanisms of mitochondrial function, Best Pract. Res. Clin. Endocrinol. Metab., 26, 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scott, D. A., Tabarean, I., Tang, Y., Cartier, A., Masliah, E., and Roy, S. (2010) A pathologic cascade leading to synaptic dysfunction in alpha–synuclein–induced neu–rodegeneration, J. Neurosci., 30, 8083–8095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Plotegher, N., Stringari, C., Jahid, S., Veronesi, M., Girotto, S., Gratton, E., and Bubacco, L. (2015) NADH fluorescence lifetime is an endogenous reporter of alpha–synuclein aggregation in live cells, FASEB J., 29, 2484–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chakraborty, S., Nian, F. S., Tsai, J. W., Karmenyan, A., and Chiou, A. (2016) Quantification of the metabolic state in cell–model of Parkinson’s disease by fluorescence life–time imaging microscopy, Sci. Rep., 6, 19145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Przedborski, S., Tieu, K., Perier, C., and Vila, M. (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease, J. Bioenerg. Biomembr., 36, 375–379.

    Article  CAS  PubMed  Google Scholar 

  135. Sameni, S., Syed, A., Marsh, J. L., and Digman, M. A. (2016) The phasor–FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington disease, Sci. Rep., 6, 34755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Marsh, J. L., Pallos, J., and Thompson, L. M. (2003) Fly models of Huntington’s disease, Hum. Mol. Genet., 12, Special No. 2, R187–193.

    Book  Google Scholar 

  137. Shirshin, E. A., Gurfinkel, Y. I., Matskeplishvili, S. T., Sasonko, M. L., Omelyanenko, N. P., Yakimov, B. P., Lademann, J., and Darvin, M. E. (2018) In vivo optical imaging of the viable epidermis around the nailfold capil–laries for the assessment of heart failure severity in humans, J. Biophotonics, 11, e201800066.

    Google Scholar 

  138. Huck, V., Gorzelanny, C., Thomas, K., Getova, V., Niemeyer, V., Zens, K., Unnerstall, T. R., Feger, J. S., Fallah, M. A., Metze, D., Stander, S., Luger, T. A., Koenig, K., Mess, C., and Schneider, S. W. (2016) From morphology to biochemical state–intravital multiphoton fluorescence lifetime imaging of inflamed human skin, Sci. Rep., 6, 22789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pouli, D., Balu, M., Alonzo, C. A., Liu, Z., Quinn, K. P., Rius–Diaz, F., Harris, R. M., Kelly, K. M., Tromberg, B. J., and Georgakoudi, I. (2016) Imaging mitochondrial dynamics in human skin reveals depth–dependent hypoxia and malignant potential for diagnosis, Sci. Transl. Med., 8, 367ra169.

    Article  CAS  Google Scholar 

  140. Klemp, M., Meinke, M. C., Weinigel, M., Rowert–Huber, H. J., Konig, K., Ulrich, M., Lademann, J., and Darvin, M. E. (2016) Comparison of morphologic criteria for actinic keratosis and squamous cell carcinoma using in vivo multiphoton tomography, Exp. Dermatol., 25, 218–222.

    Article  PubMed  Google Scholar 

  141. Yokouchi, M., Atsugi, T., Logtestijn, M. V., Tanaka, R. J., Kajimura, M., Suematsu, M., Furuse, M., Amagai, M., and Kubo, A. (2016) Epidermal cell turnover across tight junctions based on Kelvin’s tetrakaidecahedron cell shape, Elife, 5, e19593.

    Book  Google Scholar 

  142. Newton, V. L., Bradley, R. S., Seroul, P., Cherel, M., Griffiths, C. E., Rawlings, A. V., Voegeli, R., Watson, R. E., and Sherratt, M. J. (2017) Novel approaches to character–ize age–related remodelling of the dermal–epidermal junc–tion in 2D, 3D and in vivo, Skin Res. Technol., 23, 131–148.

    Article  CAS  PubMed  Google Scholar 

  143. Springer, S., Zieger, M., Koenig, K., Kaatz, M., Lademann, J., and Darvin, M. E. (2016) Optimization of the measurement procedure during multiphoton tomogra–phy of human skin in vivo, Skin Res. Technol., 22, 356–362.

    Article  CAS  PubMed  Google Scholar 

  144. Sun, Q., Zheng, W., Wang, J., Luo, Y., and Qu, J. Y. (2015) Mechanism of two–photon excited hemoglobin fluores–cence emission, J. Biomed. Opt., 20, 105014.

    Article  PubMed  Google Scholar 

  145. Shirshin, E. A., Yakimov, B. P., Rodionov, S. A., Omelyanenko, N. P., Priezzhev, A. V., Fadeev, V. V., Lademann, J., and Darvin, M. E. (2018) Formation of hemoglobin photoproduct is responsible for two–photon and single photon–excited fluorescence of red blood cells, Laser. Phys. Lett., 15, 075604.

    Article  Google Scholar 

  146. Stringari, C., Abdeladim, L., Malkinson, G., Mahou, P., Solinas, X., Lamarre, I., Brizion, S., Galey, J. B., Supatto, W., Legouis, R., Pena, A. M., and Beaurepaire, E. (2017) Multicolor two–photon imaging of endogenous fluo–rophores in living tissues by wavelength mixing, Sci. Rep., 7, 3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Patalay, R., Talbot, C., Alexandrov, Y., Lenz, M. O., Kumar, S., Warren, S., Munro, I., Neil, M. A., Konig, K., French, P. M., Chu, A., Stamp, G. W., and Dunsby, C. (2012) Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas, PLoS One, 7, e43460.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shirshin.

Additional information

Russian Text © E. A. Shirshin, B. P. Yakimov, M. E. Darvin, N. P. Omelyanenko, S. A. Rodionov, Y. I. Gurfinkel, J. Lademann, V. V. Fadeev, A. V. Priezzhev, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 139–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirshin, E.A., Yakimov, B.P., Darvin, M.E. et al. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. Biochemistry Moscow 84 (Suppl 1), 69–88 (2019). https://doi.org/10.1134/S0006297919140050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140050

Keywords

Navigation