Skip to main content
Log in

Role of Caspases in the Cytotoxicity of NK-92 Cells in Various Models of Coculturing with Trophoblasts

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Studies of interactions between natural killer (NK) cells and trophoblasts and identification of conditions for the NK cells to perform their cytotoxic function are of fundamental and practical importance for understanding their role in the development of pathological processes and complications during pregnancy. In this study, we examined changes in the content of caspases and studied activation of these enzymes in Jeg-3 trophoblasts in various models of their coculturing with NK-92 cells and demonstrated the necessity of direct contact between these cell populations for the activation of caspase-8 and caspase-3 in the trophoblasts. Contact coculturing of the two cell lines resulted in the appearance of the cytotoxic protein granzyme B in Jeg-3 cells that was accompanied by a decrease in the content of this enzyme in NK-92 cells. Distant coculturing of NK-92 and Jeg-3 cells did not trigger initiator and effector caspases characteristic for the apoptosis development in Jeg-3 cells. The observed decrease in the content of procaspases in the trophoblasts may be associated with alternative non-apoptotic functions of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFSE:

5(6)-carboxyfluorescein diacetate N-succinimidyl ester

dNK cell:

decidual natural killer cell

FITC:

fluorescein isothiocyanate

IFN-γ:

interferon γ

pNK cell:

peripheral blood NK cell

TNF-α:

tumor necrosis factor α

References

  1. Straszewski-Chavez, S. L., Abrahams, V. M., and Mor, G. (2005) The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy, Endocr. Rev., 26, 877–897; doi: https://doi.org/10.1210/er.2005-0003.

    Article  CAS  PubMed  Google Scholar 

  2. Romanski, A., Uherek, C., Bug, G., Seifried, E., Klingemann, H., Wels, W. S., Ottmann, O. G., and Tonn, T. (2016) CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies, J. Cell. Mol. Med., 20, 1287–1294; doi: https://doi.org/10.1111/jcmm.12810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crespo, A. C., Strominger, J. L., and Tilburgs, T. (2016) Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection, Proc. Natl. Acad. Sci. USA, 113, 15072–15077; doi: https://doi.org/10.1073/pnas.1617927114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y., Zhang, L., Gao, M., Zhang, F., Xu, X., Liu, X., and Hu, X. (2013) Changes of inhibitory receptors on NK-92 cells and HLA-G on BeWo cells with Toxoplasma gondii infection, Inflammation, 36, 1440–1447; doi: https://doi.org/10.1007/s10753-013-9684-1.

    Article  CAS  PubMed  Google Scholar 

  5. Matson, B. C., and Caron, K. M. (2014) Uterine natural killer cells as modulators of the maternal–fetal vasculature, Int. J. Dev. Biol., 58, 199–204; doi: https://doi.org/10.1387/ijdb.140032kc.

    Article  CAS  PubMed  Google Scholar 

  6. Manaster, I., and Mandelboim, O. (2010) The unique properties of uterine NK cells, Am. J. Reprod. Immunol., 63, 434–444; doi: https://doi.org/10.1111/j.1600-0897.2009.00794.x.

    Article  CAS  PubMed  Google Scholar 

  7. Vacca, P., Pietra, G., Falco, M., Romeo, E., Bottino, C., Bellora, F., Prefumo, F., Fulcheri, E., Venturini, P. L., Costa, M., Moretta, A., Moretta, L., and Mingari, M. C. (2006) Analysis of natural killer cells isolated from human decidua: evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function, Blood, 108, 4078–4085; doi: https://doi.org/10.1182/blood-2006-04-017343.

    Article  CAS  PubMed  Google Scholar 

  8. Koopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., and Strominger, J. L. (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential, J. Exp. Med., 198, 1201–1212; doi: https://doi.org/10.1084/jem.20030305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. King, A., Wooding, P., Gardner, L., and Loke, Y. W. (1993) Expression of perforin, granzyme A and TIA-1 by human uterine CD56+ NK cells implies they are activated and capable of effector functions, Hum. Reprod., 8, 2061–2067; doi: https://doi.org/10.1093/oxfordjournals.humrep.a137982.

    Article  CAS  PubMed  Google Scholar 

  10. Lash, G. E., Robson, S. C., and Bulmer, J. N. (2010) Review: functional role of uterine natural killer (uNK) cells in human early pregnancy decidua, Placenta, 31 (Suppl.), 87–92; doi: https://doi.org/10.1016/j.placenta.2009.12.022.

    Article  CAS  Google Scholar 

  11. Ivanisevic, M., Segerer, S., Rieger, L., Kapp, M., Dietl, J., Kammerer, U., and Frambach, T. (2010) Antigen-presenting cells in pregnant and non-pregnant human myometrium, Am. J. Reprod. Immunol., 64, 188–196; doi: https://doi.org/10.1111/j.1600-0897.2010.00858.x.

    Article  CAS  PubMed  Google Scholar 

  12. Kopcow, H. D., Allan, D. S., Chen, X., Rybalov, B., Andzelm, M. M., Ge, B., and Strominger, J. L. (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic, Proc. Natl. Acad. Sci. USA, 102, 15563–15568; doi: https://doi.org/10.1073/pnas.0507835102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Redzovic, A., Laskarin, G., Dominovic, M., Haller, H., and Rukavina, D. (2013) Mucins help to avoid alloreactivity at the maternal fetal interface, Clin. Dev. Immunol., 2013, 542152; doi: https://doi.org/10.1155/2013/542152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sun, J., Yang, M., Ban, Y., Gao, W., Song, B., Wang, Y., Zhang, Y., Shao, Q., Kong, B., and Qu, X. (2016) Tim-3 is upregulated in NK cells during early pregnancy and inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway, PLoS One, 11, e0147186; doi: https://doi.org/10.1371/journal.pone.0147186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Langhans, B., Ahrendt, M., Nattermann, J., Sauerbruch, T., and Spengler, U. (2005) Comparative study of NK cell-mediated cytotoxicity using radioactive and flow cytometric cytotoxicity assays, J. Immunol. Methods, 306, 161–168; doi: https://doi.org/10.1016/j.jim.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  16. Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526–539; doi: https://doi.org/10.1038/cdd.2014.216.

    Article  CAS  PubMed  Google Scholar 

  17. Jingting, C., Yangde, Z., Yi, Z., Huining, L., Rong, Y., and Yu, Z. (2007) Heparanase expression correlates with metastatic capability in human choriocarcinoma, Gynecol. Oncol., 107, 22–29; doi: https://doi.org/10.1016/j.ygyno.2007.05.042.

    Article  PubMed  CAS  Google Scholar 

  18. Kohler, P. O., and Bridson, W. E. (1971) Isolation of hormone-producing clonal lines of human choriocarcinoma, J. Clin. Endocrinol. Metab., 32, 683–687; doi: https://doi.org/10.1210/jcem-32-5-683.

    Article  CAS  PubMed  Google Scholar 

  19. Gong, J. H., Maki, G., and Klingemann, H. G. (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells, Leukemia, 8, 652–658.

    CAS  PubMed  Google Scholar 

  20. Komatsu, F., and Kajiwara, M. (1998) Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells, Oncol. Res., 10, 483–489.

    CAS  PubMed  Google Scholar 

  21. Coulomb-L’Hermine, A., Larousserie, F., Pflanz, S., Bardel, E., Kastelein, R. A., and Devergne, O. (2007) Expression of interleukin-27 by human trophoblast cells, Placenta, 28, 1133–1140; doi: https://doi.org/10.1016/j.placenta.2007.06.004.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  23. Hedlund, M., Stenqvist, A. C., Nagaeva, O., Kjellberg, L., Wulff, M., Baranov, V., and Mincheva-Nilsson, L. (2009) Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function, J. Immunol., 183, 340–351; doi: https://doi.org/10.4049/jimmunol.0803477.

    Article  CAS  PubMed  Google Scholar 

  24. Lokossou, A. G., Toudic, C., and Barbeau, B. (2014) Implication of human endogenous retrovirus envelope proteins in placental functions, Viruses, 6, 4609–4627; doi: https://doi.org/10.3390/v6114609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hakam, M. S., Miranda-Sayago, J. M., Hayrabedyan, S., Todorova, K., Spencer, P. S., Jabeen, A., Barnea, E. R., and Fernandez, N. (2017) Preimplantation factor (PIF) promotes HLA-G, -E, -F, -C expression in JEG-3 choriocarcinoma cells and endogenous progesterone activity, Cell. Physiol. Biochem., 43, 2277–2296; doi: https://doi.org/10.1159/000484378.

    Article  CAS  PubMed  Google Scholar 

  26. Hanna, N., Hanna, I., Hleb, M., Wagner, E., Dougherty, J., Balkundi, D., Padbury, J., and Sharma, S. (2000) Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts, J. Immunol., 164, 5721–5728.

    Article  CAS  PubMed  Google Scholar 

  27. Knofler, M., and Pollheimer, J. (2012) IFPA award in placentology lecture: molecular regulation of human trophoblast invasion, Placenta, 33, 55–62; doi: https://doi.org/10.1016/j.placenta.2011.09.019.

    Article  Google Scholar 

  28. Rousalova, I., and Krepela, E. (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review), Int. J. Oncol., 37, 1361–1378.

    CAS  PubMed  Google Scholar 

  29. Thiery, J., Keefe, D., Saffarian, S., Martinvalet, D., Walch, M., Boucrot, E., Kirchhausen, T., and Lieberman, J. (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis, Blood, 115, 1582–1593; doi: https://doi.org/10.1182/blood-2009-10-246116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thiery, J., Keefe, D., Boulant, S., Boucrot, E., Walch, M., Martinvalet, D., Goping, I. S., Bleackley, R. C., Kirchhausen, T., and Lieberman, J. (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells, Nat. Immunol., 12, 770–777; doi: https://doi.org/10.1038/ni.2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lieberman, J. (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal, Nat. Rev. Immunol., 3, 361–370; doi: https://doi.org/10.1038/nri1083.

    Article  CAS  PubMed  Google Scholar 

  32. Orange, J. S., and Ballas, Z. K. (2006) Natural killer cells in human health and disease, Clin. Immunol., 118, 1–10; doi: https://doi.org/10.1016/j.clim.2005.10.011.

    Article  CAS  PubMed  Google Scholar 

  33. Hazeldine, J., and Lord, J. M. (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults, Ageing Res. Rev., 12, 1069–1078; doi: https://doi.org/10.1016/j.arr.2013.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammer, A., and Dohr, G. (2000) Expression of Fas-ligand in first trimester and term human placental villi, J. Reprod. Immunol., 46, 83–90.

    Article  CAS  PubMed  Google Scholar 

  35. Salvesen, G. S., and Walsh, C. M. (2014) Functions of caspase 8: the identified and the mysterious, Semin. Immunol., 26, 246–252; doi: https://doi.org/10.1016/j.smim.2014.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feltham, R., Vince, J. E., and Lawlor, K. E. (2017) Caspase-8: not so silently deadly, Clin. Transl. Immunol., 6, e124; doi: https://doi.org/10.1038/cti.2016.83.

    Article  CAS  Google Scholar 

  37. Cursi, S., Rufini, A., Stagni, V., Condo, I., Matafora, V., Bachi, A., Bonifazi, A. P., Coppola, L., Superti-Furga, G., Testi, R., and Barila, D. (2006) Src kinase phosphorylates caspase-8 on Tyr380: a novel mechanism of apoptosis suppression, EMBO J., 25, 1895–1905; doi: https://doi.org/10.1038/sj.emboj.7601085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Powley, I. R., Hughes, M. A., Cain, K., and MacFarlane, M. (2016) Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex, Oncogene, 35, 5629–5640; doi: https://doi.org/10.1038/onc.2016.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen, G. M. (1997) Caspases: the executioners of apoptosis, Biochem. J., 326, Pt. 1, 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gauster, M., and Huppertz, B. (2010) The paradox of caspase 8 in human villous trophoblast fusion, Placenta, 31, 82–88; doi: https://doi.org/10.1016/j.placenta.2009.12.007.

    Article  CAS  PubMed  Google Scholar 

  41. Adler, R. R., Ng, A. K., and Rote, N. S. (1995) Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR, Biol. Reprod., 53, 905–910; doi: 10.1095biolreprod53.4.905.

    Article  CAS  PubMed  Google Scholar 

  42. Wei, B. R., Xu, C., and Rote, N. S. (2012) Increased resistance to apoptosis during differentiation and syncytialization of BeWo choriocarcinoma cells, Adv. Biosci. Biotechnol., 3, 805–813; doi: https://doi.org/10.4236/abb.2012.326100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Borges, M., Bose, P., Frank, H. G., Kaufmann, P., and Potgens, A. J. (2003) A two-colour fluorescence assay for the measurement of syncytial fusion between trophoblast-derived cell lines, Placenta, 24, 959–964; doi: https://doi.org/10.1016/S0143-4004(03)00173-5.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Nasiry, S., Spitz, B., Hanssens, M., Luyten, C., and Pijnenborg, R. (2006) Differential effects of inducers of syncytialization and apoptosis on BeWo and JEG-3 choriocarcinoma cells, Hum. Reprod., 21, 193–201; doi: https://doi.org/10.1093/humrep/dei272.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips, T. A., Ni, J., Pan, G., Ruben, S. M., Wei, Y. F., Pace, J. L., and Hunt, J. S. (1999) TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege, J. Immunol., 162, 6053–6059.

    CAS  PubMed  Google Scholar 

  46. Yusuf, K., Smith, S. D., Sadovsky, Y., and Nelson, D. M. (2002) Trophoblast differentiation modulates the activity of caspases in primary cultures of term human trophoblasts, Pediatr. Res., 52, 411–415; doi: https://doi.org/10.1203/00006450-200209000-00018.

    Article  CAS  PubMed  Google Scholar 

  47. Van Raam, B. J., and Salvesen, G. S. (2012) Proliferative versus apoptotic functions of caspase-8: hetero or homo: the caspase-8 dimer controls cell fate, Biochim. Biophys. Acta, 1824, 113–122; doi: https://doi.org/10.1016/j.bbapap.2011.06.005.

    Article  PubMed  CAS  Google Scholar 

  48. Keller, N., Grutter, M. G., and Zerbe, O. (2010) Studies of the molecular mechanism of caspase-8 activation by solution NMR, Cell Death Differ., 17, 710–718; doi: https://doi.org/10.1038/cdd.2009.155.

    Article  CAS  PubMed  Google Scholar 

  49. Pop, C., Fitzgerald, P., Green, D. R., and Salvesen, G. S. (2007) Role of proteolysis in caspase-8 activation and stabilization, Biochemistry, 46, 4398–4407; doi: https://doi.org/10.1021/bi602623b.

    Article  CAS  PubMed  Google Scholar 

  50. Carrillo, I., Droguett, D., Castillo, C., Liempi, A., Munoz, L., Maya, J. D., Galanti, N., and Kemmerling, U. (2016) Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection, Exp. Parasitol., 168, 9–15; doi: https://doi.org/10.1016/j.exppara.2016.06.008.

    Article  CAS  PubMed  Google Scholar 

  51. Barnhart, B. C., and Peter, M. E. (2002) Two faces of caspase-8, Nat. Immunol., 3, 896–898; doi: https://doi.org/10.1038/ni1002-896.

    Article  CAS  PubMed  Google Scholar 

  52. Nakashima, A., Shiozaki, A., Myojo, S., Ito, M., Tatematsu, M., Sakai, M., Takamori, Y., Ogawa, K., Nagata, K., and Saito, S. (2008) Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion, Am. J. Pathol., 173, 653–664; doi: https://doi.org/10.2353/ajpath.2008.071169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sweeney, E. A., Inokuchi, J., and Igarashi, Y. (1998) Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide, FEBS Lett., 425, 61–65.

    Article  CAS  PubMed  Google Scholar 

  54. Estebanez-Perpina, E., Fuentes-Prior, P., Belorgey, D., Braun, M., Kiefersauer, R., Maskos, K., Huber, R., Rubin, H., and Bode, W. (2000) Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue, Biol. Chem., 381, 1203–1214; doi: https://doi.org/10.1515/BC.2000.148.

    Article  CAS  PubMed  Google Scholar 

  55. Watt, W., Koeplinger, K. A., Mildner, A. M., Heinrikson, R. L., Tomasselli, A. G., and Watenpaugh, K. D. (1999) The atomic-resolution structure of human caspase-8, a key activator of apoptosis, Structure, 7, 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  56. Afonina, I. S., Cullen, S. P., and Martin, S. J. (2010) Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B, Immunol. Rev., 235, 105–116; doi: https://doi.org/10.1111/j.0105-2896.2010.00908.x.

    Article  CAS  PubMed  Google Scholar 

  57. Morandi, F., and Pistoia, V. (2014) Interactions between HLA-G and HLA-E in physiological and pathological conditions, Front. Immunol., 5, 394; doi: https://doi.org/10.3389/fimmu.2014.00394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mikhailova, V. A., Bazhenov, D. O., Viazmina, L. P., Agnaeva, A. O., Bespalova, O. N., Sel’kov, S. A., and Sokolov, D. I. (2019) Cytotoxic activity of peripheral blood NK cells towards trophoblast cells during pregnancy, Bull. Exp. Biol. Med., 166, 567–573; doi: https://doi.org/10.1007/s10517-019-04393-4.

    Article  CAS  PubMed  Google Scholar 

  59. Park, D. W., Lee, H. J., Park, C. W., Hong, S. R., Kwak-Kim, J., and Yang, K. M. (2010) Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages, Am. J. Reprod. Immunol., 63, 173–180; doi: https://doi.org/10.1111/j.1600-0897.2009.00777.x.

    Article  PubMed  Google Scholar 

  60. Maki, G., Klingemann, H. G., Martinson, J. A., and Tam, Y. K. (2001) Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92, J. Hematother. Stem. Cell. Res., 10, 369–383; doi: https://doi.org/10.1089/152581601750288975.

    Article  CAS  PubMed  Google Scholar 

  61. Lash, G. E., Naruse, K., Robson, A., Innes, B. A., Searle, R. F., Robson, S. C., and Bulmer, J. N. (2011) Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production, Hum. Reprod., 26, 2289–2295; doi: https://doi.org/10.1093/humrep/der198.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., Qu, D., Sun, J., Zhao, L., Wang, Q., Shao, Q., Kong, B., Zhang, Y., and Qu, X. (2016) Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2, Cell. Mol. Immunol., 13, 615–627; doi: https://doi.org/10.1038/cmi.2015.41.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science School grant NSh_2873.2018.7 and State Budget Project no. AAAA_A19_119021290116_1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Milyutina.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain description of any studies with participants of humans or animals performed by any of the authors.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 10, pp. 1460–1472.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-121, September 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyutina, Y.P., Mikhailova, V.A., Pyatygina, K.M. et al. Role of Caspases in the Cytotoxicity of NK-92 Cells in Various Models of Coculturing with Trophoblasts. Biochemistry Moscow 84, 1186–1196 (2019). https://doi.org/10.1134/S0006297919100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919100079

Keywords

Navigation