Skip to main content
Log in

Receptor Functions of Semaphorin 4D

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Semaphorin 4D (Sema4D) is a multifunctional protein widely expressed in an organism that plays an important role in the control of many physiological and pathological processes, including immunoregulation, neurogenesis, angiogenesis, and tumor progression. It was first described almost 30 years ago and has been actively studied since then. However, with rare exceptions, all studies of the Sema4D activity proceed from the assumption that semaphorin is a ligand that acts through specific receptors (CD72 and plexins) and that the main targets of Sema4D in different tissues are cells that carry these receptors on the membrane. This review analyzes the data indicating the presence of an alternative mechanism for the regulatory activity of Sema4D that involves the functioning of membrane semaphorin as a receptor ensuring the outside-in signaling. Cell signaling pathways mediated by the membrane Sema4D and their contribution to the Sema4D-dependent regulation of cell functions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCR:

B cell receptor

NK cells:

natural killer cells

References

  1. Semaphorin Nomenclature Committee (1999) Unified nomenclature for the semaphorins/collapsins, Cell, 97, 551–552.

    Article  Google Scholar 

  2. Bougeret, C., Mansur, I. G., Dastot, H., Schmid, M., Mahouy, G., Bensussan, A., and Boumsell, L. (1992) Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation, J. Immunol., 148, 318–323.

    CAS  PubMed  Google Scholar 

  3. Swiercz, J. M., Kuner, R., Behrens, J., and Offermanns, S. (2002) Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology, Neuron, 35, 51–63.

    Article  CAS  PubMed  Google Scholar 

  4. Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., Love, C., Jones, E. Y., Kikutani, H., Lubetzki, C., Dusart, I., and Chedotal, A. (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendro-cytes and upregulated after CNS lesion, J. Neurisci., 23, 9229–9239.

    Article  CAS  Google Scholar 

  5. Wang, X., Kumanogoh, A., Watanabe, C., Shi, W., Yoshida, K., and Kikutani, H. (2001) Functional soluble CD100/Sema4D released from activated lymphocytes: possible role in normal and pathologic immune responses, Blood, 97, 3498–3504.

    Article  CAS  PubMed  Google Scholar 

  6. Kumanogoh, A., Watanabe, C., Lee, I., Wang, X., Shi, W., Araki, H., Hirata, H., Iwahori, K., Uchida, J., Yasui, T., Matsumoto, M., Yoshida, K., Yakura, H., Pan, C., Parnes, J. R., and Kikutani, H. (2000) Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling, Immunity, 13, 621–631.

    Article  CAS  PubMed  Google Scholar 

  7. Kumanogoh, A., Suzuki, K., Ch’ng, E., Watanabe, C., Marukawa, S., Takegahara, N., Ishida, I., Sato, T., Habu, S., Yoshida, K., Shi, W., and Kikutani, H. (2002) Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells, J. Immunol., 169, 1175–1181.

    Article  CAS  PubMed  Google Scholar 

  8. Conrotto, P., Valdembri, D., Corso, S., Serini, G., Tamagnone, L., Comoglio, P. M., Bussolino, F., and Giordano, S. (2005) Sema4D induces angiogenesis through Met recruitment by Plexin B1, Blood, 105, 4321–4329.

    Article  CAS  PubMed  Google Scholar 

  9. Negishi-Koga, T., Shinohara, M., Komatsu, N., Bito, H., Kodama, T., Friedel, H., and Takayanagi, H. (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D, Nat. Med., 17, 1473–1480, doi: https://doi.org/10.1038/nm.2489.

    Article  CAS  PubMed  Google Scholar 

  10. Evans, E., Jonason, S., Bussler, H., Torno, S., Veeraraghavan, J., Reilly, C., Doherty, A., Seils, J., Winter, A., Mallow, C., Kirk, R., Howell, A., Giralico, S., Scrivens, M., Klimatcheva, K., Fisher, L., Bowers, J., Paris, M., Smith, S., and Zauderer, M. (2015) Antibody blockade of semaphorin 4D promotes immune infiltration into tumor and enhances response to other immunomodulatory therapies, Cancer Immunol. Res., 3, 689–701, doi: https://doi.org/10.1158/2326-6066.CIR-14-0171.

    Article  CAS  PubMed  Google Scholar 

  11. Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G. I., Song, H., Chedotal, A., Winberg, M. L., Goodman, C. S., Poo, M., Tessier-Lavigne, M., and Comoglio, P. M. (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates, Cell, 99, 71–80.

    Article  CAS  PubMed  Google Scholar 

  12. Chabbert-de Ponnat, I., Marie-Cardine, A., Pasterkamp, J., Schiavon, V., Tamagnone, L., Thomasset, N., Bensussan, A., and Boumsell, L. (2005) Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively, Int. Immunol., 17, 439–447.

    Article  CAS  PubMed  Google Scholar 

  13. Witherden, A., Watanabe, M., Garijo, O., Rieder, E., Sarkisyan, G., Cronin, J., Verdino, P., Wilson, A., Kumanogoh, A., Kikutani, H., Teyton, L., Fischer, H., and Havran, L. (2012) The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function, Immunity, 37, 314–325, doi: https://doi.org/10.1016/j.immuni.2012.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giacobini, P., Messina, A., Morello, F., Ferraris, N., Corso, S., Penachioni, J., Giordano, S., Tamagnone, L., and Fasolo, A. (2008) Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1–Met complex, Mol. Cell Biol., 183, 555–566.

    CAS  Google Scholar 

  15. Kuklina, E. M., and Nekrasova, I. V. (2017) New aspects of the Sema4D-dependent control of lymphocyte activation, Dokl. Biol. Sci., 473, 84–88, doi: https://doi.org/10.1134/S0012496617020028.

    Article  CAS  PubMed  Google Scholar 

  16. Herold, C., Bismuth, G., Bensussan, A., and Boumsell, L. (1995) Activation signals are delivered through two distinct epitopes of CD100, a unique 150 kDa human lymphocyte surface structure previously defined by BB18 mAb, Int. Immunol., 7, 1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Granziero, L., Circosta, P., Scielzo, C., Frisaldi, E., Stella, S., Geuna, M., Giordano, S., Ghia, P., and Caligaris-Cappio, F. (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes, Blood, 101, 1962–1969.

    Article  CAS  PubMed  Google Scholar 

  18. Mizrahi, S., Markel, G., Porgador, A., Bushkin, Y., and Mandelboim, O. (2007) CD100 on NK cells enhance IFNγ secretion and killing of target cells expressing CD72, PLoS One, 2, e818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, Y., Guo, Y., Fan, C., Lei, Y., Zhou, Y., Zhang, M., Ye, C., Ji, G., Ma, L., Lian, J., Moorman, J. P., Yao, Z. Q., Wang, J., Hao, C., Zhang, Y., and Jia, Z. (2017) Interferon-α-enhanced CD100/plexin-B1/B2 interactions promote natural killer cell functions in patients with chronic hepatitis C virus infection, Front. Immunol., 8, 1435, doi: https://doi.org/10.3389/fimmu.2017.01435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishide, M., Nojima, S., Ito, D., Takamatsu, H., Koyama, S., Kang, S., Kimura, T., Morimoto, K., Hosokawa, T., Hayama, Y., Kinehara, Y., Kato, Y., Nakatani, T., Nakanishi, Y., Tsuda, T., Park, J. H., Hirano, T., Shima, Y., Narazaki, M., Morii, E., and Kumanogoh, A. (2017) Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis, Ann. Rheum. Dis., 76, 1440–1448, doi: https://doi.org/10.1136/annrheumdis-2016-210706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, H., Kann, M. G., Mallory, E. K., Yang, Y. H., Bugshan, A., Binmadi, N. O., and Basile, J. R. (2017) Recruitment of Tiam1 to semaphorin 4D activates Rac and enhances proliferation, invasion, and metastasis in oral squamous cell carcinoma, Neoplasia, 19, 65–74, doi: https://doi.org/10.1016/j.neo.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  22. Li, B. J., He, Y., Zhang, Y., Guo, Y. H., Zhou, Y., Zhang, P. X., Wang, W., Zhao, J. R., Li, J. G., Zuo, W. Z., Fan, C., and Jia, Z. S. (2017) Interferon-α-induced CD100 on naive CD8+ T cells enhances antiviral responses to hepatitis C infection through CD72 signal transduction, J. Int. Med. Res., 45, 89–100, doi: https://doi.org/10.1177/0300060516676136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, X., Bjorkstrom, N. K., and Melum, E. (2017) Intact CD100–CD72 interaction necessary for TCR-induced T cell proliferation, Front. Immunol., 8, 765, doi: https://doi.org/10.3389/fimmu.2017.00765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Correa-Rocha, R., Lopez-Abente, J., Gutierrez, C., Perez-Fernandez, V. A., Prieto-Sanchez, A., Moreno-Guillen, S., Munoz-Fernandez, M. A., and Pion, M. (2018) CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion, PLoS One, 13, e0203419, doi: {rs 10.1371/journal.pone.0203419 DOI}.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eriksson, E., Jeffrey, M., Emily H., Batista, D., Holditch, J., Keh, E., Norris, J., Keating, M., Deeks, G., Hunt, P., Martin, N., Rosenberg, G., Hecht, M., and Nixon, D. (2012) Expansion of CD8+ T cells lacking Sema4D/CD100 during HIV-1 infection identifies a subset of T cells with decreased functional capacity, Blood, 119, 745–755, doi: https://doi.org/10.1182/blood-2010-12-324848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, B., Ma, Y., Zhang, Y., Zhang, C., Yi, J., Zhuang, R., Yu, H., Yang, A., Zhang, Y., and Jin, B. (2015) CD8low CD100– T cells identify a novel CD8 T cell subset associated with viral control during human Hantaan virus infection, J. Virol., 89, 11834–11844, doi: https://doi.org/10.1128/JVI.01610-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, Y., Guo, Y., Zhou, Y., Zhang, Y., Fan, C., Ji, G., Wang, Y., Ma, Z., Lian, J., Hao, C., Yao, Q., and Jia, Z. (2014) CD100 up-regulation induced by interferon-α on B cells is related to hepatitis C virus infection, PLoS One, 9, e113338, doi: https://doi.org/10.1371/journal.pone.0113338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elhabazi, A., Lang, V., Herold, C., Freeman, G. J., Bensussan, A., Boumsell, L., and Bismuth, G. (1997) The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity, J. Biol. Chem., 272, 23515–23520.

    Article  CAS  PubMed  Google Scholar 

  29. Herold, C., Elhabazi, A., Bismuth, G., Bensussan, A., and Boumsell, L. (1996) CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion, J. Immunol., 157, 5262–5268.

    CAS  PubMed  Google Scholar 

  30. Billard, C., Delaire, S., Raffoux, E., Bensussan, A., and Boumsell, L. (2000) Switch in the protein tyrosine phosphatase associated with human CD100 semaphorin at terminal B-cell differentiation stage, Blood, 95, 965–972.

    Article  CAS  Google Scholar 

  31. Stover, D. R., and Walsh, K. A. (1994) Protein-tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases, Mol. Cell Biol., 14, 5523–5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saunders, A. E., and Johnson, P. (2010) Modulation of immune cell signaling by the leukocyte common tyrosine phosphatase, CD45, Cell Signal., 22, 339–348, doi: https://doi.org/10.1016/j.cellsig.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  33. Simeoni, L. (2017) Lck activation: puzzling the pieces together, Oncotarget, 8, 102761–102762, doi: https://doi.org/10.18632/oncotarget.22309.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Palacios, E. H., and Weiss, A. (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation, Oncogene, 23, 7990–8000.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, Y., Harder, K. W., Huntington, N. D., Hibbs, M. L., and Tarlinton, D. M. (2005) Lyn tyrosine kinase: accentuating the positive and the negative, Immunity, 22, 9–18.

    PubMed  Google Scholar 

  36. Irie-Sasaki, J., Sasaki, T., Matsumoto, W., Opavsky, A., Cheng, M., Welstead, G., Griffiths, E., Krawczyk, C., Richardson, C. D., Aitken, K., Iscove, N., Koretzky, G., Johnson, P., Liu, P., Rothstein, D. M., and Penninger, J. M. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signaling, Nature, 409, 349–354.

    Article  CAS  PubMed  Google Scholar 

  37. Shi, W., Kumanogoh, A., Watanabe, C., Uchida, J., Wang, X., Yasui, T., Yukawa, K., Ikawa, M., Okabe, M., Parnes, J. R., Yoshida, K., and Kikutani, H. (2000) The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice, Immunity, 13, 633–642.

    Article  CAS  PubMed  Google Scholar 

  38. Kuklina, E. M., Nekrasova, I. V., and Valieva, Yu. V. (2017) The involving of semaphorin Sema4D in T-dependent activation of B lymphocytes, Bull. Exp. Biol. Med., 163, 444–447, doi: https://doi.org/10.1007/s10517-017-3825-8.

    Article  CAS  Google Scholar 

  39. Krzywinska, E., Cornillon, A., Allende-Vega, N., Vo, D.-N., Rene, C., Lu, Z.-Y., Pasero, C., Olive, D., Fegueux, N., Ceballos, P., Hicheri, Y., Sobecki, M., Rossi, J.-F., Cartron, G., and Villalba, M. (2016) CD45 isoform profile identifies natural killer (NK) subsets with differential activity, PLoS One, 11, e0150434, doi: https://doi.org/10.1371/journal.pone.0150434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, C., Yu, H. S., Sun, K. H., Hsieh, S. C., and Tsai, C. Y. (2002) Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-α in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase, Clin. Exp. Immunol., 129, 78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding. This work was supported by the Russian Foundation for Basic Research (project 19-015-00379) and the State Budget Project no. 01201353248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kuklina.

Ethics declarations

Ethical approval. This article does not contain any studies with human participants or animals performed by the author.

Additional information

Conflict of interest. The author declares no conflict of interest in financial or any other sphere.

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 9, pp. 1259–1266.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuklina, E.M. Receptor Functions of Semaphorin 4D. Biochemistry Moscow 84, 1021–1027 (2019). https://doi.org/10.1134/S0006297919090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919090049

Keywords

Navigation