Skip to main content
Log in

Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPDE:

benz[a]pyrene diol epoxide

CPD:

cyclobutane pyrimidine dimer

GG-NER:

global genome nucleotide excision repair

NER:

nucleotide excision repair

PAR:

poly(ADP-ribose)

PARP:

poly(ADP-ribose) polymerase

RNAP:

RNA polymerase

RPA:

replication protein A

SUMO:

small ubiquitin-like modifier

TC-NER:

transcription-coupled NER

TFIIH:

transcription factor IIH

XP:

xeroderma pigmentosum

XPC and XPA:

xeroderma pigmentosum factors C and A, respectively

References

  1. Friedberg, E. C. (2003) DNA damage and repair, Nature, 421, 436–440, doi: https://doi.org/10.1038/nature01408.

    Article  CAS  PubMed  Google Scholar 

  2. Gillet, L. C., and Scharer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276, doi: https://doi.org/10.1021/cr040483f.

    Article  CAS  PubMed  Google Scholar 

  3. Tornaletti, S., and Hanawalt, P. C. (1999) Effect of DNA lesions on transcription elongation, Biochimie, 81, 139–146.

    Article  CAS  PubMed  Google Scholar 

  4. Fousteri, M., and Mullenders, L. H. (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects, Cell Res., 18, 73–84, doi: https://doi.org/10.1038/cr.2008.6.

    Article  CAS  PubMed  Google Scholar 

  5. Sugasawa, K., Shimizu, Y., Iwai, S., and Hanaoka, F. (2002) A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex, DNA Repair (Amst.), 1, 95–107.

    Article  CAS  Google Scholar 

  6. Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007) DNA repair triggered by sensors of helical dynamics, Trends Biochem. Sci., 32, 494–499, doi: https://doi.org/10.1016/j.tibs.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  7. Min, J. H., and Pavletich, N. P. (2007) Recognition of DNA damage by the Rad4 nucleotide excision repair protein, Nature, 449, 570–575, doi: https://doi.org/10.1038/nature06155.

    Article  CAS  PubMed  Google Scholar 

  8. Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Scharer, O. D., and Lavrik, O. I. (2008) Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages, Bioorg. Chem., 36, 77–84, doi: https://doi.org/10.1016/j.bioorg.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  9. Rechkunova, N. I., and Lavrik, O. I. (2010) Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair, Subcell. Biochem., 50, 251–277, doi: https://doi.org/10.1007/978-90-481-3471-7_13.

    Article  CAS  PubMed  Google Scholar 

  10. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947, doi: https://doi.org/10.1074/jbc.M112.444026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fitch, M. E., Nakajima, S., Yasui, A., and Ford, J. M. (2003) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product, J. Biol. Chem., 278, 46906–46910, doi: https://doi.org/10.1074/jbc.M307254200 https://doi.org/10.1074/jbc.M307254200.

    Article  CAS  PubMed  Google Scholar 

  12. Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A., and Mullenders, L. H. (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions, DNA Repair (Amst.), 4, 571–582, doi: https://doi.org/10.1016/j.dnarep.2005.01.001.

    Article  CAS  Google Scholar 

  13. Houten, B. V., Kuper, J., and Kisker, C. (2016) Role of XPD in cellular functions: to TFIIH and beyond, DNA Repair (Amst.), 44, 136–142, doi: https://doi.org/10.1016/j.dnarep.2016.05.019.

    Article  CAS  Google Scholar 

  14. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors, EMBO J., 16, 6559–6573, doi: https://doi.org/10.1093/emboj/16.21.6559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Staresincic, L., Fagbemi, A. F., Enzlin, J. H., Gourdin, A. M., Wijgers, N., Dunand-Sauthier, I., Giglia-Mari, G., Clarkson, S. G., Vermeulen, W., and Scharer, O. D. (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair, EMBO J., 28, 1111–1120, doi: https://doi.org/10.1038/emboj.2009.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., and Lavrik, O. I. (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair, Nucleic Acids Res., 38, 8083–8094, doi: https://doi.org/10.1093/nar/gkq649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kemp, M. G., Gaddameedhi, S., Choi, J. H., Hu, J., and Sancar, A. (2014) DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair, J. Biol. Chem., 289, 26574–26583, doi: https://doi.org/10.1074/jbc.M114.597088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grabbe, C., Husnjak, K., and Dikic, I. (2011) The spatial and temporal organization of ubiquitin networks, Nat. Rev. Mol. Cell. Biol., 12, 295–307, doi: https://doi.org/10.1038/nrm3099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Husnjak, K., and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions, Annu. Rev. Biochem., 81, 291–322, doi: https://doi.org/10.1146/annurevbiochem-051810-094654.

    Article  CAS  PubMed  Google Scholar 

  20. Komander, D., and Rape, M. (2012) The ubiquitin code, Annu. Rev. Biochem., 81, 203–229, doi: https://doi.org/10.1146/annurev-biochem-060310-170328.

    Article  CAS  PubMed  Google Scholar 

  21. Van Cuijk, L., Vermeulen, W., and Marteijn, J. A. (2014) Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER, Exp. Cell. Res., 329, 101–109, doi: https://doi.org/10.1016/j.yexcr.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  22. Ruthemann, P., Balbo Pogliano, C., and Naegeli, H. (2016) Global-genome nucleotide excision repair controlled by ubiquitin/sumo modifiers, Front. Genet., 7, 68, doi: https://doi.org/10.3389/fgene.2016.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chitale, S., and Richly, H. (2017) Timing of DNA lesion recognition: ubiquitin signaling in the NER pathway, Cell Cycle, 16, 163–171, doi: https://doi.org/10.1080/15384101.2016.1261227.

    Article  CAS  PubMed  Google Scholar 

  24. Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005) UV-induced ubiquitination of XPC protein mediated by UV-DDB-ubiquitin ligase complex, Cell, 121, 387–400, doi: https://doi.org/10.1016/j.cell.2005.02.035.

    Article  CAS  PubMed  Google Scholar 

  25. Fischer, E. S., Scrima, A., Bohm, K., Matsumoto, S., Lingaraju, G. M., Faty, M., Yasuda, T., Cavadini, S., Wakasugi, M., Hanaoka, F., Iwai, S., Gut, H., Sugasawa, K., and Thoma, N. H. (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation, Cell, 147, 1024–1039, doi: https://doi.org/10.1016/j.cell.2011.10.035.

    Article  CAS  PubMed  Google Scholar 

  26. Kapetanaki, M. G., Guerrero-Santoro, J., Bisi, D. C., Hsieh, C. L., Rapic-Otrin, V., and Levine, A. S. (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites, Proc. Natl. Acad. Sci. USA, 103, 2588–2593, doi: https://doi.org/10.1073/pnas.0511160103.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, H., Zhai, L., Xu, J., Joo, H. Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006) Histone H3 and H4 ubiquitination by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage, Mol. Cell, 22, 383–394, doi: https://doi.org/10.1016/j.molcel.2006.03.035.

    Article  CAS  PubMed  Google Scholar 

  28. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., and Nakatani, Y. (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage, Cell, 113, 357–367.

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto, S., Fischer, E. S., Yasuda, T., Dohmae, N., Iwai, S., Mori, T., Nishi, R., Yoshino, K., Sakai, W., Hanaoka, F., Thoma, N. H., and Sugasawa, K. (2015) Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein, Nucleic Acids Res., 43, 1700–1713, doi: https://doi.org/10.1093/nar/gkv038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puumalainen, M. R., Lessel, D., Ruthemann, P., Kaczmarek, N., Bachmann, K., Ramadan, K., and Naegeli, H. (2014) Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat. Commun., 5, 3695, doi: https://doi.org/10.1038/ncomms4695.

    Article  PubMed  Google Scholar 

  31. He, J., Zhu, Q., Wani, G., Sharma, N., Han, C., Qian, J., Pentz, K., Wang, Q. E., and Wani, A. A. (2014) Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis, J. Biol. Chem., 289, 27278–27289, doi: https://doi.org/10.1074/jbc.M114.589812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerrero-Santoro, J., Kapetanaki, M. G., Hsieh, C. L., Gorbachinsky, I., Levine, A. S., and Rapic-Otrin, V. (2008) The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A, Cancer Res., 68, 5014–5022, doi: https://doi.org/10.1158/0008-5472.CAN-07-6162.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Q. E., Zhu, Q., Wani, G., El-Mahdy, M. A., Li, J., and Wani, A. A. (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation, Nucleic Acids Res., 33, 4023–4034, doi: https://doi.org/10.1093/nar/gki684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Cuijk, L., van Belle, G. J., Turkyilmaz, Y., Poulsen, S. L., Janssens, R. C., Theil, A. F., Sabatella, M., Lans, H., Mailand, N., Houtsmuller, A. B., Vermeulen, W., and Marteijn, J. A. (2015) SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair, Nat. Commun., 6, 7499, doi: https://doi.org/10.1038/ncomms8499.

    Article  PubMed  Google Scholar 

  35. Han, C., Zhao, R., Kroger, J., He, J., Wani, G., Wang, Q. E., and Wani, A. A. (2017) UV irradiation-induced SUMOylation of DDB2 regulates nucleotide excision repair, Carcinogenesis, 38, 976–985, doi: https://doi.org/10.1093/carcin/bgx076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poulsen, S. L., Hansen, R. K., Wagner, S. A., van Cuijk, L., van Belle, G. J., Streicher, W., Wikstrom, M., Choudhary, C., Houtsmuller, A. B., Marteijn, J. A., Bekker-Jensen, S., and Mailand, N. (2013) RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response, J. Cell. Biol., 201, 797–807, doi: https://doi.org/10.1083/jcb.201212075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akita, M., Tak, Y. S., Shimura, T., Matsumoto, S., Okuda-Shimizu, Y., Shimizu, Y., Nishi, R., Saitoh, H., Iwai, S., Mori, T., Ikura, T., Sakai, W., Hanaoka, F., and Sugasawa, K. (2015) SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair, Sci. Rep., 5, 10984, doi: https://doi.org/10.1038/srep10984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein, U. R., and Nigg, E. A. (2009) SUMO-dependent regulation of centrin-2, J. Cell. Sci., 122, 3312–3321, doi: https://doi.org/10.1242/jcs.050245.

    Article  CAS  PubMed  Google Scholar 

  39. Wilson, M. D., Harreman, M., and Svejstrup, J. Q. (2013) Ubiquitination and degradation of elongating RNA polymerase II: the last resort, Biochim. Biophys. Acta, 1829, 151–157, doi: https://doi.org/10.1016/j.bbagrm.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  40. Kang, T. H., Lindsey-Boltz, L. A., Reardon, J. T., and Sancar, A. (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase, Proc. Natl. Acad. Sci. USA, 107, 4890–4895, doi: https://doi.org/10.1073/pnas.0915085107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yates, M., and Marechal, A. (2018) Ubiquitination at the fork: making and breaking chains to complete DNA replication, Int. J. Mol. Sci., 19, E2909, doi: https://doi.org/10.3390/ijms19102909.

    Article  CAS  PubMed  Google Scholar 

  42. Dou, H., Huang, C., Singh, M., Carpenter, P. B., and Yeh, E. T. (2010) Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex, Mol. Cell, 39, 333–345, doi: https://doi.org/10.1016/j.molcel.2010.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perez-Oliva, A. B., Lachaud, C., Szyniarowski, P., Munoz, I., Macartney, T., Hickson, I., Rouse, J., and Alessi, D. R. (2015) USP45 deubiquitinase controls ERCC1-XPF endonuclease-mediated DNA damage responses, EMBO J., 34, 326–343, doi: https://doi.org/10.15252/embj.201489184.

    Article  CAS  PubMed  Google Scholar 

  44. Ame, J. C., Spenlehauer, C., and de Murcia, G. (2004) The PARP superfamily, Bioessays, 26, 882–893, doi: https://doi.org/10.1002/bies.20085.

    Article  CAS  PubMed  Google Scholar 

  45. Schreiber, V., Dantzer, F., Ame, J. C., and de Murcia, G. (2006) Poly(ADP-ribose): novel functions for an old molecule, Nat. Rev. Mol. Cell. Biol., 7, 517–528, doi: https://doi.org/10.1038/nrm1963.

    Article  CAS  PubMed  Google Scholar 

  46. Shieh, W. M., Ame, J. C., Wilson, M. V., Wang, Z. Q., Koh, D. W., Jacobson, M. K., and Jacobson, E. L. (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem., 273, 30069–30072.

    Google Scholar 

  47. Virag, L., and Szabo, C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors, Pharmacol. Rev., 54, 375–429.

    Article  CAS  PubMed  Google Scholar 

  48. Burkle, A., and Virag, L. (2013) Poly(ADP-ribose): PARadigms and PARadoxes, Mol. Aspects Med., 34, 1046–1065, doi: https://doi.org/10.1016/j.mam.2012.12.010.

    Article  CAS  PubMed  Google Scholar 

  49. Kraus, W. L., and Hottiger, M. O. (2013) PARP-1 and gene regulation: progress and puzzles, Mol. Aspects Med., 34, 1109–1123, doi: https://doi.org/10.1016/j.mam.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  50. Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases, Mol. Cell, 58, 959–969, doi: https://doi.org/10.1016/j.molcel.2015.01.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, C., Vyas, A., Kassab, M. A., Singh, A. K., and Yu, X. (2017) The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acids Res., 45, 8129–8141, doi: https://doi.org/10.1093/nar/gkx565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khodyreva, S. N., and Lavrik, O. I. (2016) Poly(ADP-ribose) polymerase 1 as a key regulator of DNA repair, Mol. Biol. (Moscow), 50, 580–595, doi: https://doi.org/10.7868/S0026898416040030.

    Article  CAS  Google Scholar 

  53. Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease 1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229, doi: https://doi.org/10.1093/nar/gki266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2004) Poly(ADP-ribose) polymerase-1 inhibits strand-displacement synthesis of DNA catalyzed by DNA polymerase beta, Biochemistry (Moscow), 69, 558–568.

    Article  CAS  Google Scholar 

  55. Berger, N. A., Sikorski, G. W., Petzold, S. J., and Kurohara, K. K. (1980) Defective poly(adenosine diphosphoribose) synthesis in xeroderma pigmentosum, Biochemistry, 19, 289–293.

    Article  CAS  PubMed  Google Scholar 

  56. McCurry, L. S., and Jacobson, M. K. (1981) Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype, J. Biol. Chem., 256, 551–553.

    CAS  PubMed  Google Scholar 

  57. Jacobson, E. L., Antol, K. M., Juarez-Salinas, H., and Jacobson, M. K. (1983) Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts, J. Biol. Chem., 258, 103–107.

    CAS  PubMed  Google Scholar 

  58. Yoon, Y. S., Kim, J. W., Kang, K. W., Kim, Y. S., Choi, K. H., and Joe, C. O. (1996) Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis, J. Biol. Chem., 271, 9129–9134.

    Article  CAS  PubMed  Google Scholar 

  59. Chang, H., Sander, C. S., Muller, C. S., Elsner, P., and Thiele, J. J. (2002) Detection of poly(ADP-ribose) by immunocytochemistry: a sensitive new method for the early identification of UVB- and H2O2-induced apoptosis in keratinocytes, Biol. Chem., 383, 703–708, doi: https://doi.org/10.1515/BC.2002.072.

    Article  CAS  PubMed  Google Scholar 

  60. Pleschke, J. M., Kleczkowska, H. E., Strohm, M., and Althaus, F. R. (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins, J. Biol. Chem., 275, 40974–40980, doi: https://doi.org/10.1074/jbc.M006520200.

    Article  CAS  PubMed  Google Scholar 

  61. Fahrer, J., Kranaster, R., Altmeyer, M., Marx, A., and Burkle, A. (2007) Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length, Nucleic Acids Res., 35, e143, doi: https://doi.org/10.1093/nar/gkm944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gagne, J. P., Isabell, M., Lo, K. S., Bourassa, S., Hendzel, M. J., Dawson, V. L., Dawson, T. M., and Poirier, G. G. (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes, Nucleic Acids Res., 36, 6959–6976, doi: https://doi.org/10.1093/nar/gkn771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses, Mol. Cell., 52, 272–285, doi: https://doi.org/10.1016/j.molcel.2013.08.026.

    Article  CAS  PubMed  Google Scholar 

  64. Flohr, C., Burkle, A., Radicella, J. P., and Epe, B. (2003) Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein, Nucleic Acids Res., 31, 5332–5337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vodenicharov, M. D., Ghodgaonkar, M. M., Halappanavar, S. S., Shah, R. G., and Shah, G. M. (2005) Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B irradiation, J. Cell. Sci., 118, 589–599, doi: https://doi.org/10.1242/jcs.01636.

    Article  CAS  PubMed  Google Scholar 

  66. Purohit, N. K., Robu, M., Shah, R. G., Geacintov, N. E., and Shah, G. M. (2016) Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro, Sci. Rep., 6, 19020, doi: https://doi.org/10.1038/srep19020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin, T., and Yang, M. S. (2008) Benzo[a]pyrene-induced necrosis in the HepG(2) cells via PARP-1 activation and NAD+ depletion, Toxicology, 245, 147–153, doi: https://doi.org/10.1016/j.tox.2007.12.020.

    Article  CAS  PubMed  Google Scholar 

  68. Tao, G. H., Yang, L. Q., Gong, C. M., Huang, H. Y., Liu, J. D., Liu, J. J., Yuan, J. H., Chen, W., and Zhuang, Z. X. (2009) Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to benzo(a)pyrene, Mol. Biol. Rep., 36, 2413–2422, doi: https://doi.org/10.1007/s11033-009-9472-z.

    Article  CAS  PubMed  Google Scholar 

  69. Fischer, J. M. F., Zubel, T., Jander, K., Fix, J., Trussina, I. R. E. A., Gebhard, D., Bergemann, J., Burkle, A., and Mangerich, A. (2018) PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity, Arch. Toxicol., 92, 1323–1340, doi: https://doi.org/10.1007/s00204-017-2115-6.

    Article  CAS  PubMed  Google Scholar 

  70. Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., Hensbergen, P., Deelder, A., de Groot, A., Matsumoto, S., Sugasawa, K., Thoma, N., Vermeulen, W., Vrieling, H., and Mullenders, L. (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1, J. Cell. Biol., 199, 235–249, doi: https://doi.org/10.1083/jcb.201112132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luijsterburg, M. S., Lindh, M., Acs, K., Vrouwe, M. G., Pines, A., van Attikum, H., Mullenders, L. H., and Dantuma, N. P. (2012) DDB2 promotes chromatin decondensation at UV-induced DNA damage, J. Cell Biol., 197, 267–281, doi: https://doi.org/10.1083/jcb.201106074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Robu, M., Shah, R. G., Petitclerc, N., Brind'Amour, J., Kandan-Kulangara, F., and Shah, G. M. (2013) Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 110, 1658–1663, doi: https://doi.org/10.1073/pnas.1209507110.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robu, M., Shah, R. G., Purohit, N. K., Zhou, P., Naegeli, H., and Shah, G. M. (2017) Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 114, 6847–6856, doi: https://doi.org/10.1073/pnas.1706981114.

    Article  CAS  Google Scholar 

  74. Maltseva, E. A., Rechkunova, N. I., Sukhanova, M. V., and Lavrik, O. I. (2015) Poly(ADP-ribose) polymerase 1 modulates interaction of the nucleotide excision repair factor XPC-RAD23B with DNA via poly(ADP-ribosyl)ation, J. Biol. Chem., 290, 21811–21820, doi: https://doi.org/10.1074/jbc.M115.646638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. King, B. S., Cooper, K. L., Liu, K. J., and Hudson, L. G. (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair, J. Biol. Chem., 287, 39824–39833, doi: https://doi.org/10.1074/jbc.M112.393504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fischer, J. M., Popp, O., Gebhard, D., Veith, S., Fischbach, A., Beneke, S., Leitenstorfer, A., Bergemann, J., Scheffner, M., Ferrando-May, E., Mangerich, A., and Burkle, A. (2014) Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function, FEBS J., 281, 3625–3641, doi: https://doi.org/10.1111/febs.12885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eki, T., and Hurwitz, J. (1991) Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA, J. Biol. Chem., 266, 3087–3100.

    CAS  PubMed  Google Scholar 

  78. Gagne, J. P., Pic, E., Isabelle, M., Krietsch, J., Ethier, C., Paquet, E., Kelly, I., Boutin, M., Moon, K. M., Foster, L. J., and Poirier, G. G. (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress, Nucleic Acids Res., 40, 7788–7805, doi: https://doi.org/10.1093/nar/gks486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Illuzzi, G., Fouquerel, E., Ame, J. C., Noll, A., Rehmet, K., Nasheuer, H. P., Dantzer, F., and Schreiber, V. (2014) PARG is dispensable for recovery from transient replicative stress but required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, Nucleic Acids Res., 42, 7776–7792, doi: https://doi.org/10.1093/nar/gku505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maltseva, E. A., Krasikova, Y. S., Sukhanova, M. V., Rechkunova, N. I., and Lavrik, O. I. (2018) Replication protein A as a modulator of the poly(ADP-ribose)polymerase 1 activity, DNA Repair (Amst.), 72, 28–38, doi: https://doi.org/10.1016/j.dnarep.2018.09.010.

    Article  CAS  Google Scholar 

  81. Thorslund, T., von Kobbe, C., Harrigan, J. A., Indig, F. E., Christiansen, M., Stevnsner, T., and Bohr, V. A. (2005) Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress, Mol. Cell. Biol., 25, 7625–7636, doi: https://doi.org/10.1128/MCB.25.17.7625-7636.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Evdokimov, A. N., Petruseva, I. O., Pestryakov, P. E., and Lavrik, O. I. (2011) Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA, Biochemistry (Moscow), 76, 157–166.

    Article  CAS  Google Scholar 

  83. Yu, Y., and Waters, R. (2005) Histone acetylation, chromatin remodeling and nucleotide excision repair: hint from the study on MFA2 in Saccharomyces cerevisiae, Cell Cycle, 4, 1043–1045, doi: https://doi.org/10.4161/cc.4.8.1928.

    Article  CAS  PubMed  Google Scholar 

  84. Waters, R., van Eijk, P., and Reed, S. (2015) Histone modification and chromatin remodeling during NER, DNA Repair (Amst.), 36, 105–113, doi: https://doi.org/10.1016/j.dnarep.2015.09.013.

    Article  CAS  Google Scholar 

  85. Yu, S., Evans, K., van Eijk, P., Bennett, M., Webster, R. M., Leadbitter, M., Teng, Y., Waters, R., Jackson, S. P., and Reed, S. H. (2016) Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin, Genome Res., 26, 1376–1387, doi: https://doi.org/10.1101/gr.209106.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Datta, A., Bagchi, S., Nag, A., Shiyanov, P., Adami, G. R., Yoon, T., and Raychaudhuri, P. (2001) The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase, Mutat. Res., 486, 89–97.

    Article  CAS  PubMed  Google Scholar 

  87. Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M., and Levine, A. S. (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation, Nucleic Acids Res., 30, 2588–2598.

    Article  CAS  PubMed  Google Scholar 

  88. Martinez, E., Palhan, V. B., Tjernberg, A., Lymar, E. S., Gamper, A. M., Kundu, T. K., Chait, B. T., and Roeder, R. G. (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo, Mol. Cell. Biol., 21, 6782–6795, doi: https://doi.org/10.1128/MCB.21.20.6782-6795.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsunuma, R., Niida, H., Ohhata, T., Kitagawa, K., Sakai, S., Uchida, C., Shiotani, B., Matsumoto, M., Nakayama, K. I., Ogura, H., Shiiya, N., and Kitagawa, M. (2015) UV damage-induced phosphorylation of HBO1 triggers CRL4DDB2-mediated degradation to regulate cell proliferation, Mol. Cell. Biol., 36, 394–406, doi: https://doi.org/10.1128/MCB.00809-15.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, R., Han, C., Eisenhauer, E., Kroger, J., Zhao, W., Yu, J., Selvendiran, K., Liu, X., Wani, A. A., and Wang, Q. E. (2014) DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells, Mol. Cancer Res., 12, 370–380, doi: https://doi.org/10.1158/1541-7786.MCR-13-0281.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, Q., Battu, A., Ray, A., Wani, G., Qian, J., He, J., Wang, Q. E., and Wani, A. A. (2015) Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2, Mutat. Res., 776, 16–23, doi: https://doi.org/10.1016/j.mrfmmm.2015.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kakumu, E., Nakanishi, S., Shiratori, H. M., Kato, A., Kobayashi, W., Machida, S., Yasuda, T., Adachi, N., Saito, N., Ikura, T., Kurumizaka, H., Kimura, H., Yokoi, M., Sakai, W., and Sugasawa, K. (2017) Xeroderma pigmento-sum group C protein interacts with histones: regulation by acetylated states of histone H3, Genes Cells, 22, 310–327, doi: https://doi.org/10.1111/gtc.12479.

    Article  CAS  PubMed  Google Scholar 

  93. Tillhon, M., Cazzalini, O., Nardo, T., Necchi, D., Sommatis, S., Stivala, L. A., Scovassi, A. I., and Prosperi, E. (2012) p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG, DNA Repair (Amst.), 11, 844–852, doi: https://doi.org/10.1016/j.dnarep.2012.08.001.

    Article  CAS  Google Scholar 

  94. Fan, W., and Luo, J. (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA, Mol. Cell, 39, 247–258, doi: https://doi.org/10.1016/j.molcel.2010.07.006.

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, M., Geng, R., Guo, X., Yuan, R., Zhou, X., Zhong, Y., Huo, Y., Zhou, M., Shen, Q., Li, Y., Zhu, W., and Wang, J. (2017) PCAF/GCN5-mediated acetylation of RPA1 promotes nucleotide excision repair, Cell Rep., 20, 1997–2009, doi: https://doi.org/10.1016/j.celrep.2017.08.015.

    Article  CAS  PubMed  Google Scholar 

  96. He, H., Wang, J., and Liu, T. (2017) UV-Induced RPA1 acetylation promotes nucleotide excision repair, Cell Rep., 20, 2010–2025, doi: https://doi.org/10.1016/j.celrep.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  97. Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, 316, 1160–1166, doi: https://doi.org/10.1126/science.1140321.

    Article  CAS  PubMed  Google Scholar 

  98. Zannini, L., Delia, D., and Buscemi, G. (2014) CHK2 kinase in the DNA damage response and beyond, J. Mol. Cell. Biol., 6, 442–457, doi: https://doi.org/10.1093/jmcb/mju045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Attwood, P. V., Besant, P. G., and Piggott, M. J. (2011) Focus on phosphoaspartate and phosphoglutamate, Amino Acids, 40, 1035–1051, doi: https://doi.org/10.1007/s00726-010-0738-5.

    Article  CAS  PubMed  Google Scholar 

  100. Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse, Nucleic Acids Res., 40, D261–D270, doi: https://doi.org/10.1093/nar/gkr1122.

    Article  CAS  PubMed  Google Scholar 

  101. Shah, P., Zhao, B., Qiang, L., and He, Y. Y. (2018) Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair, Nucleic Acids Res., 46, 5050–5060, doi: https://doi.org/10.1093/nar/gky239 https://doi.org/10.1093/nar/gky239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, X., Shell, S. M., Yang, Z., and Zou, Y. (2006) Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation, Cancer Res., 66, 2997–3005, doi: https://doi.org/10.1158/0008-5472.CAN-05-3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, T. H., Park, J. M., Leem, S. H., and Kang, T. H. (2014) Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair, Oncogene, 33, 19–25, doi: https://doi.org/10.1038/onc.2012.539.

    Article  CAS  PubMed  Google Scholar 

  104. Coin, F., Auriol, J., Tapias, A., Clivio, P., Vermeulen, W., and Egly, J. M. (2004) Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity, EMBO J., 23, 4835–4846, doi: https://doi.org/10.1038/sj.emboj.7600480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oakley, G. G., Loberg, L. I., Yao, J., Risinger, M. A., Yunker, R. L., Zernik-Kobak, M., Khanna, K. K., Lavin, M. F., Carty, M. P., and Dixon, K. (2001) UV-induced hyperphosphorylation of replication protein A depends on DNA replication and expression of ATM protein, Mol. Biol. Cell, 12, 1199–1213, doi: https://doi.org/10.1091/mbc.12.5.1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, V. F., and Weaver, D. T. (1993) The ionizing irradiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells, Mol. Cell. Biol., 13, 7222–7231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rodrigo, G., Roumagnac, S., Wold, M. S., Salles, B., and Calsou, P. (2000) DNA replication but not nucleotide excision repair is required for UVC-induced replication protein A phosphorylation in mammalian cells, Mol. Cell. Biol., 20, 2696–2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Niida, H., Matsunuma, R., Horiguchi, R., Uchida, C., Nakazawa, Y., Motegi, A., Nishimoto, K., Sakai, S., Ohhata, T., Kitagawa, K., Moriwaki, S., Nishitani, H., Ui, A., Ogi, T., and Kitagawa, M. (2017) Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair, Nat. Commun., 8, 16102, doi: https://doi.org/10.1038/ncomms16102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnakumar, R., and Kraus, W. L. (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets, Mol. Cell, 39, 8–24, doi: https://doi.org/10.1016/j.molcel.2010.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements. The authors are grateful to Yu. S. Krasikova for help in the manuscript preparation.

Funding

Funding. The work was supported by the Russian Foundation for Basic Research (projects nos. 18-04-00596 and 19-04-00481) and the Program of Basic Scientific Research of the State Academies of Sciences for 2013–2020 (nos. AAAA-A17-117020210022-4 for O.I.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Rechkunova.

Ethics declarations

Ethical norm compliance. This review does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest.

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 9, pp. 1244–1258.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechkunova, N.I., Maltseva, E.A. & Lavrik, O.I. Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair. Biochemistry Moscow 84, 1008–1020 (2019). https://doi.org/10.1134/S0006297919090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919090037

Keywords

Navigation