Skip to main content
Log in

Mitochondria with Morphology Characteristic for Alzheimer’s Disease Patients Are Found in the Brain of OXYS Rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Growing evidence suggests that mitochondrial dysfunction is closely linked to the pathogenesis of sporadic Alzheimer’s disease (AD). One of the key contributors to various aspects of AD pathogenesis, along with metabolic dysfunction, is mitochondrial dynamics, involving balance between fusion and fission, which regulates mitochondrial number and morphology in response to changes in cellular energy demand. Recently, Zhang et al. ((2016) Sci. Rep., 6, 18725) described a previously unknown mitochondrial phenotype manifesting as elongated chain-linked mitochondria termed “mitochondria-on-a-string” (MOAS) in brain tissue from AD patients and mouse models of AD. The authors associated this phenotype with fission arrest, but implications of MOAS formation in AD pathogenesis remain to be understood. Here we analyze the presence and number of MOAS in the brain of OXYS rats simulating key signs of sporadic AD. Using electron microscopy, we found MOAS in OXYS prefrontal cortex neuropil in all stages of AD-like pathology, including mani-festation (5-month-old rats) and progression (12–18-month-old rats). The most pronounced elevation of MOAS content (8–fold) in OXYS rats compared to Wistar controls was found at the preclinical stage (20 days) on the background of decreased numbers of non-MOAS elongated mitochondria. From the age of 20 days through 18 months, the percentage of MOAS-containing neuronal processes increased from 1.7 to 8.3% in Wistar and from 13.9 to 16% in OXYS rats. Our results support the importance of the disruption of mitochondrial dynamics in AD pathogenesis and corroborate the existence of a causal link between impaired mitochondrial dynamics and formation of the distinctive phenotype of “mitochondria-on-a-sting”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer’s disease

MOAS:

mitochondria-on-a-string

ROS:

reactive oxygen species

References

  1. Morley, J. E., Armbrecht, H. J., Farr, S. A., and Kumar, V. B. (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease, Biochim. Biophys. Acta, 1822, 650–656.

    Article  PubMed  CAS  Google Scholar 

  2. Swerdlow, R. H., Burns, J. M., and Khan, S. M. (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives, Biochim. Biophys. Acta, 1842, 1219–1231.

    Article  PubMed  CAS  Google Scholar 

  3. Payne, B. A. I., and Chinnery, P. F. (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions, Biochim. Biophys. Acta, 1847, 1347–1353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ziegler, D. V., Wiley, C. D., and Velarde, M. C. (2015) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging, Aging Cell, 14, 1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Westermann, B. (2012) Bioenergetic role of mitochondrial fusion and fission, Biochim. Biophys. Acta, 1817, 1833–1838.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu, X., Perry, G., Smith, M. A., and Wang, X. (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease, J. Alzheimers Dis., 33, 253–262.

    Article  CAS  Google Scholar 

  7. Kim, D. I., Lee, K. H., Oh, J. Y., Kim, J. S., and Han, H. J. (2017) Relationship between β-amyloid and mitochondrial dynamics, Cell. Mol. Neurobiol., 37, 955–968.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, L., Trushin, S., Christensen, T. A., Bachmeier, B. V., Gateno, B., Schroeder, A., Yao, J., Itoh, K., Sesaki, H., Poon, W. W., Gylys, K. H., Patterson, E. R., Parisi, J. E., Diaz Brinton, R., Salisbury, J. L., and Trushina, E. (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease, Sci. Rep., 6, 18725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Morozov, Y. M., Datta, D., Paspalas, C. D., and Arnsten, A. F. T. (2017) Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex, Neurobiol. Aging, 51, 9–18.

    Article  PubMed  CAS  Google Scholar 

  10. Youle, R. J., and van der Bliek, A. M. (2012) Mitochondrial fission, fusion, and stress, Science, 337, 1062–1065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Zh., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats-a genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294–298.

    Article  Google Scholar 

  12. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898–909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K. Y., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396–1413.

    Article  PubMed  Google Scholar 

  14. Tyumentsev, M. A., Stefanova, N. A., Muraleva, N. A., Rumyantseva, Y. V., Kiseleva, E., Vavilin, V. A., and Kolosova, N. G. (2018). Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimers Dis., 63, 1075–1088.

    Article  PubMed  CAS  Google Scholar 

  15. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimers Dis., 38, 681–694.

    Article  PubMed  CAS  Google Scholar 

  16. Stefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal Res., 59, 163–177.

    Article  PubMed  CAS  Google Scholar 

  17. Cai, Q., and Tammineni, P. (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease, J. Alzheimers Dis., 57, 1087–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Correia, S. C., Perry, G., and Moreira, P. I. (2016) Mitochondrial traffic jams in Alzheimer’s disease-pin-pointing the roadblocks, Biochim. Biophys. Acta, 1862, 1909–1917.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kolosova.

Additional information

Original Russian Text © M. A. Tyumentsev, N. A. Stefanova, E. V. Kiseleva, N. G. Kolosova, 2018, published in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1361–1367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyumentsev, M.A., Stefanova, N.A., Kiseleva, E.V. et al. Mitochondria with Morphology Characteristic for Alzheimer’s Disease Patients Are Found in the Brain of OXYS Rats. Biochemistry Moscow 83, 1083–1088 (2018). https://doi.org/10.1134/S0006297918090109

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918090109

Keywords

Navigation