Skip to main content
Log in

Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMD:

age-related macular degeneration

CX3CR1:

C-X3-C-motif of chemokine receptor 1

GFAP:

glial fibrillar acidic protein

IL:

interleukin

RPE:

retinal pigment epithelium

TNF:

tumor necrosis factor

References

  1. Shao, J., Choudhary, M. M., and Schachat, A. P. (2016) Neovascular age-related macular degeneration, in Retinal Pharmacotherapeutics, Karger Publishers, Vol. 55, pp. 125–136.

    Google Scholar 

  2. Telegina, D. V., Kozhevnikova, O. S., and Kolosova, N. G. (2017) Molecular mechanisms of cell death in retina during development of age-related macular degeneration, Adv. Gerontol., 7, 17–24.

    Article  Google Scholar 

  3. Ardeljan, D., and Chan, C. C. (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging, Prog. Retin. Eye Res., 37, 68–89.

    Article  PubMed  CAS  Google Scholar 

  4. Cuenca, N., Fernandez-Sanchez, L., Campello, L., Maneu, V., De la Villa, P., Lax, P., and Pinilla, I. (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases, Prog. Retin. Eye Res., 43, 17–75.

    Article  PubMed  CAS  Google Scholar 

  5. Bora, N. S., Matta, B., Lyzogubov, V. V., and Bora, P. S. (2015) Relationship between the complement system, risk factors and prediction models in age-related macular degeneration, Mol. Immunol., 63, 176–183.

    Article  PubMed  CAS  Google Scholar 

  6. Goldman, D. (2014) Muller glial cell reprogramming and retina regeneration, Nat. Rev. Neurosci., 15, 431–442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Coorey, N. J., Shen, W., Chung, S. H., Zhu, L., and Gillies, M. C. (2012) The role of glia in retinal vascular disease, Clin. Exp. Optometry, 95, 266–281.

    Article  Google Scholar 

  8. Rossi, D. (2015) Astrocyte physiopathology: at the cross-roads of intercellular networking, inflammation and cell death, Prog. Neurobiol., 130, 86–120.

    Article  PubMed  CAS  Google Scholar 

  9. Kur, J., Newman, E. A., and Chan-Ling, T. (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease, Prog. Retin. Eye Res., 31, 377–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X., and Sharma, S. C. (2016) Glia-neuron interactions in the mammalian retina, Prog. Retin. Eye Res., 51, 1–40.

    Article  PubMed  CAS  Google Scholar 

  11. Newman, E. A. (2015) Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters, Phil. Trans. R. Soc. B, 370, 20140195.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. De Hoz, R., Rojas, B., Ramirez, A. I., Salazar, J. J., Gallego, B. I., Trivino, A., and Ramirez, J. M. (2016) Retinal macroglial responses in health and disease, BioMed. Res. Int., 2016, 2954721.

    PubMed  PubMed Central  Google Scholar 

  13. Kim, J. H., Kim, J. H., Park, J., Lee, S. W., Kim, W. J., Yu, Y. S., and Kim, K. W. (2006) Blood-neural barrier: intercellular communication at glio-vascular interface, J. Biochem. Mol. Biol., 39, 339–345.

    PubMed  CAS  Google Scholar 

  14. Zhang, X., Cheng, M., and Chintala, S. K. (2004) Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration, Invest. Ophthalm. Vis. Sci., 45, 2374–2383.

    Article  Google Scholar 

  15. Ramirez, J. M., Ramirez, A. I., Salazar, J. J., de Hoz, R., and Trivino, A. (2001) Changes of astrocytes in retinal ageing and age-related macular degeneration, Exp. Eye Res., 73, 601–615.

    Article  PubMed  CAS  Google Scholar 

  16. Jadhav, A. P., Cho, S. H., and Cepko, C. L. (2006) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property, Proc. Natl. Acad. Sci. USA, 103, 18998–19003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jadhav, A. P., Roesch, K., and Cepko, C. L. (2009) Development and neurogenic potential of Muller glial cells in the vertebrate retina, Prog. Retin. Eye Res., 28, 249–262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Goureau, O., Do Rhee, K., and Yang, X. J. (2004) Ciliary neurotrophic factor promotes Muller glia differentiation from the postnatal retinal progenitor pool, Dev. Neurosci., 26, 359–370.

    Article  PubMed  CAS  Google Scholar 

  19. Bhattacharya, S., Das, A. V., Mallya, K. B., and Ahmad, I. (2008) Ciliary neurotrophic factor-mediated signaling regulates neuronal versus glial differentiation of retinal stem cell/progenitors by concentration-dependent recruitment of mitogens-activated protein kinase and Janus kinase-signal transducer and activator of transcription pathways in conjunction with Notch signaling, Stem Cells, 26, 2611–2624.

    Article  PubMed  CAS  Google Scholar 

  20. Dubois-Dauphin, M., Poitry-Yamate, C., De Bilbao, F., Julliard, A. K., Jourdan, F., and Donati, G. (1999) Early postnatal Muller cell death leads to retinal but not optic nerve degeneration in NSE-Hu-Bcl-2 transgenic mice, Neuroscience, 95, 9–21.

    Article  Google Scholar 

  21. Xia, X., and Ahmad, I. (2016) Unlocking the neurogenic potential of mammalian Muller glia, Int. J. Stem Cells, 9, 169–175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hamon, A., Roger, J. E., Yang, X. J., and Perron, M. (2016) Muller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems, Develop. Dynam., 245, 727–738.

    Article  Google Scholar 

  23. Webster, M. K., Cooley-Themm, C., Barnett, J. D., Bach, H. B., Vainner, J. M., Webster, S. E., and Linn, C. L. (2017) Evidence of BrdU-positive retinal neurons after application of an Alpha7 nicotinic acetylcholine receptor agonist, Neuroscience, 346, 437–446.

    Article  PubMed  CAS  Google Scholar 

  24. Bringmann, A., and Wiedemann, P. (2012) Muller glial cells in retinal disease, Ophthalmologica, 227, 1–19.

    Article  PubMed  Google Scholar 

  25. Gallina, D., Todd, L., and Fischer, A. J. (2014) A comparative analysis of Muller glia-mediated regeneration in the vertebrate retina, Exp. Eye Res., 123, 121–130.

    Article  PubMed  CAS  Google Scholar 

  26. Kolomeyer, A. M., and Zarbin, M. A. (2014) Trophic factors in the pathogenesis and therapy for retinal degenerative diseases, Survey Ophthalmol., 59, 134–165.

    Article  Google Scholar 

  27. Hurley, J. B., Chertov, A. O., Lindsay, K., Giamarco, M., Cleghorn, W., Du, J., and Brockerhoff, S. (2014) Energy metabolism in the vertebrate retina, in Vertebrate Photoreceptors, Springer, Japan, pp. 91–137.

    Chapter  Google Scholar 

  28. Reichenbach, A., and Bringmann, A. (2013) New functions of Muller cells, Glia, 61, 651–678.

    Article  PubMed  Google Scholar 

  29. Schey, K. L., Wang, Z., Wenke, J. L., and Qi, Y. (2014) Aquaporins in the eye: expression, function, and roles in ocular disease, Biochim. Biophys. Acta, 1840, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  30. Hippert, C., Graca, A. B., Barber, A. C., West, E. L., Smith, A. J., Ali, R. R., and Pearson, R. A. (2015) Muller glia activation in response to inherited retinal degeneration is highly varied and disease-specific, PLoS One, 10, e0120415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Luna, G., Lewis, G. P., Banna, C. D., Skalli, O., and Fisher, S. K. (2010) Expression profiles of nestin and synemin in reactive astrocytes and Muller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin, Mol. Vis., 16, 2511–2523.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Belecky-Adams, T. L., Chernoff, E. C., Wilson, J. M., and Dharmarajan, S. (2013) Reactive Muller glia as potential retinal progenitors, in Neural Stem Cells-New Perspectives, InTech.

    Google Scholar 

  33. Hol, E. M., and Pekny, M. (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system, Curr. Opin. Cell Biol., 32, 121–130.

    Article  PubMed  CAS  Google Scholar 

  34. Nakazawa, T., Takeda, M., Lewis, G. P., Cho, K. S., Jiao, J., Wilhelmsson, U., Fisher, S. K., Pekny, M., Chen, D. F., and Miller, J. W. (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin, Invest. Ophthalmol. Vis. Sci., 48, 2760–2768.

    Article  PubMed  Google Scholar 

  35. Edwards, M. M., McLeod, D. S., Bhutto, I. A., Villalonga, M. B., Seddon, J. M., and Lutty, G. A. (2016) Idiopathic preretinal glia in aging and age-related macular degeneration, Exp. Eye Res., 150, 44–61.

    Article  PubMed  CAS  Google Scholar 

  36. Verkhratsky, A., Rodriguez, J. J., and Parpura, V. (2014) Neuroglia in ageing and disease, Cell Tissue Res., 357, 493–503.

    Article  PubMed  Google Scholar 

  37. Ganesh, B. S., and Chintala, S. K. (2011) Inhibition of reactive gliosis attenuates excitotoxicity-mediated death of retinal ganglion cells, PloS One, 6, e18305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kalloniatis, M., Nivison-Smith, L., Chua, J., Acosta, M. L., and Fletcher, E. L. (2016) Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: a review, Exp. Eye Res., 150, 106–121.

    Article  PubMed  CAS  Google Scholar 

  39. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic path-way in the progression of AMD-like retinopathy in senes-cence-accelerated OXYS rats, Biogerontology, 19, 223–235.

    Article  PubMed  CAS  Google Scholar 

  41. Telegina, D. V., Korbolina, E. E., Ershov, N. I., Kolosova, N. G., and Kozhevnikova, O. S. (2015) Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy, Cell Cycle, 14, 3544–3556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kettenmann, H., Hanisch, U. K., Noda, M., and Verkhratsky, A. (2011) Physiology of microglia, Physiol. Rev., 91, 461–553.

    Article  PubMed  CAS  Google Scholar 

  43. Ohsawa, K., Imai, Y., Sasaki, Y., and Kohsaka, S. (2004) Microglia/macrophage-specific protein Iba1 binds to fibrin and enhances its actin-binding activity, J. Neurochem., 88, 844–856.

    Article  PubMed  CAS  Google Scholar 

  44. Langmann, T. (2007) Microglia activation in retinal degeneration, J. Leukoc. Biol., 81, 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  45. Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, 308, 1314–1318.

    Article  PubMed  CAS  Google Scholar 

  46. Fu, R., Shen, Q., Xu, P., Luo, J. J., and Tang, Y. (2014) Phagocytosis of microglia in the central nervous system diseases, Mol. Neurobiol., 49, 1422–1434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Xu, H., Chen, M., and Forrester, J. V. (2009) Para-inflammation in the aging retina, Progr. Retin. Eye Res., 28, 348–368.

    Article  CAS  Google Scholar 

  48. Karlstetter, M., Scholz, R., Rutar, M., Wong, W. T., Provis, J. M., and Langmann, T. (2015) Retinal microglia: just bystander or target for therapy? Prog. Retin. Eye Res., 45, 30–57.

    Article  PubMed  Google Scholar 

  49. Perry, V. H., and Teeling, J. (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration, Semin. Immunopathol., 35, 601–612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Paglinawan, R., Malipiero, U., Schlapbach, R., Frei, K., Reith, W., and Fontana, A. (2003) TGFβ directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokines genes and cell migratory genes, Glia, 44, 219–231.

    Article  PubMed  Google Scholar 

  51. Karlstetter, M., Nothdurfter, C., Aslanidis, A., Moeller, K., Horn, F., Scholz, R., Neumann, H., Weber, B. H., Rupprecht, R., and Langmann, T. (2014) Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis, J. Neuroinflamm., 11,3.

    Article  CAS  Google Scholar 

  52. Wang, M., Wang, X., Zhao, L., Ma, W., Rodriguez, I. R., Fariss, R. N., and Wong, W. T. (2014) Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina, J. Neurosci., 34, 3793–3806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kimura, A., Namekata, K., Guo, X., Harada, C., and Harada, T. (2016) Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration, Int. J. Mol. Sci., 17, E1584.

    Article  PubMed  CAS  Google Scholar 

  54. Cardona, A. E., Pioro, E. P., Sasse, M. E., Kostenko, V., Cardona, S. M., Dijkstra, I. M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., Lee, J. C., Cook, D. N., Jung, S., Lira, S. A., Littman, D. R., and Ransohoff, R. M. (2006) Control of microglial neurotoxicity by the fractalkine receptor, Nat. Neurosci., 9, 917–924.

    Article  PubMed  CAS  Google Scholar 

  55. Liang, K. J., Lee, J. E., Wang, Y. D., Ma, W., Fontainhas, A. M., Fariss, R. N., and Wong, W. T. (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling, Invest. Ophthalmol. Vis. Sci., 50, 4444–4451.

    Article  PubMed  Google Scholar 

  56. Sheridan, G. K., and Murphy, K. J. (2013) Neuronglia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage, Open Biol., 3, 130181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Damani, M. R., Zhao, L., Fontainhas, A. M., Amaral, J., Fariss, R. N., and Wong, W. T. (2011) Age-related alterations in the dynamic behavior of microglia, Aging Cells, 10, 263–276.

    Article  CAS  Google Scholar 

  58. Ma, W., Coon, S., Zhao, L., Fariss, R. N., and Wong, W. T. (2013) A2E accumulation influences retinal microglial activation and complement regulation, Neurobiol. Aging, 34, 943–960.

    Article  PubMed  CAS  Google Scholar 

  59. Ma, W., and Wong, W. T. (2016) Aging changes in retinal microglia and their relevance to age-related retinal disease, Adv. Exp. Med. Biol., 854, 73–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Medzhitov, R. (2008) Origin and physiological roles of inflammation, Nature, 454, 428–435.

    Article  PubMed  CAS  Google Scholar 

  61. Karlstetter, M., Ebert, S., and Langmann, T. (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models, Immunobiology, 215, 685–691.

    Article  PubMed  CAS  Google Scholar 

  62. Polazzi, E., and Monti, B. (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications, Progr. Neurobiol., 92, 293–315.

    Article  Google Scholar 

  63. Gupta, N., Brown, K. E., and Milam, A. H. (2003) Activated microglia in human retinitis pigmentosa, lateonset retinal degeneration, and age–related macular degeneration, Exp. Eye Res., 76, 463–471.

    Article  PubMed  CAS  Google Scholar 

  64. Luhmann, U. F., Lange, C. A., Robbie, S., Munro, P. M., Cowing, J. A., Armer, H. E., Luong, V., Carvalho, L. S., MacLaren, R. E., Fitzke, F. W., Bainbridge, J. W., and Ali, R. R. (2012) Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signaling, PLoS One, 7, e35551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hollyfield, J. G., Bonilha, V. L., Rayborn, M. E., Yang, X., Shadrach, K. G., Lu, L., Ufret, R. L., Salomon, R. G., and Perez, V. L. (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration, Nat. Med., 14, 194–198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hollyfield, J. G., Perez, V. L., and Salomon, R. G. (2010) A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration, Mol. Neurobiol., 41, 290–298.

    Article  PubMed  CAS  Google Scholar 

  67. Cruz-Guilloty, F., Saeed, A. M., Echegaray, J. J., Duffort, S., Ballmick, A., Tan, Y., Betancourt, M., Viteri, E., Ramkhellawan, G. C., Ewald, E., Feuer, W., Huang, D., Wen, R., Hong, L., Wang, H., Laird, J. M., Sene, A., Apte, R. S., Salomon, R. G., Hollyfield, J. G., and Perez, V. L. (2013) Infiltration of proinflammatory m1 macrophages into the external retina precedes damage in a mouse model of age-related macular degeneration, Int. J. Inflamm., 2013, 503725.

    Article  Google Scholar 

  68. Ufret-Vincenty, R. L., Aredo, B., Liu, X., McMahon, A., Chen, P. W., Sun, H., Niederkorn, J. Y., and Kedzierski, W. (2010) Transgenic mice expressing variants of complement factor H develop AMD-like retinal findings, Invest. Ophthalmol. Vis. Sci., 51, 5878–5887.

    Article  PubMed  Google Scholar 

  69. Combadiere, C., Feumi, C., Raoul, W., Keller, N., Rodero, M., Pezard, A., Lavalette, S., Houssier, M., Jonet, L., Picard, E., Debre, P., Sirinyan, M., Deterre, P., Ferroukhi, T., Cohen, S. Y., Chauvaud, D., Jeanny, J. C., Chemtob, S., Behar-Cohen, F., and Sennlaub, F. (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, J. Clin. Invest., 117, 2920–2928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Luhmann, U. F., Robbie, S., Munro, P. M., Barker, S. E., Duran, Y., Luong, V., Fitzke, F. W., Bainbridge, J. W., Ali, R. R., and MacLaren, R. E. (2009) The drusen-like phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages, Invest. Ophthalmol. Vis. Sci., 50, 5934–5943.

    Article  PubMed  Google Scholar 

  71. Chan, C. C., Ross, R. J., Shen, D., Ding, X., Majumdar, Z., Bojanowski, C. M., Zhou, M., Salem, N., Jr., Bonner, R., and Tuo, J. (2008) Ccl2/Cx3cr1-deficient mice: an animal model for age-related macular degeneration, Ophthalm. Res., 40, 124–128.

    Article  CAS  Google Scholar 

  72. Pennesi, M. E., Neuringer, M., and Courtney, R. J. (2012) Animal models of age-related macular degeneration, Mol. Aspects Med., 33, 487–509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Santos, A. M., Martin-Oliva, D., Ferrer-Martin, R. M., Tassi, M., Calvente, R., Sierra, A., Carrasco, M. C., Marin-Teva, J. L., Navascues, J., and Cuadros, M. A. (2010) Microglial response to light-induced photoprotector degeneration in the mouse retina, J. Comp. Neurol., 518, 477–492.

    Article  PubMed  CAS  Google Scholar 

  74. Ma, W., Zhao, L., Fontainhas, A. M., Fariss, R. N., and Wong, W. T. (2009) Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD, PloS One, 4, e7945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ma, W., Zhao, L., and Wong, W. T. (2012) Microglia in the outer retina and their relevance to pathogenesis of agerelated macular degeneration, Adv. Exp. Med. Biol., 732, 37–42.

    Article  CAS  Google Scholar 

  76. Kozhevnikova, O. S., Korbolina, E. E., Ershov, N. I., and Kolosova, N. G. (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy, Cell Cycle, 12, 1745–1761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Perez, V. L., and Caspi, R. R. (2015) Immune mechanisms in inflammatory and degenerative eye disease, Trends Immunol., 36, 354–363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shaw, P. X., Stiles, T., Douglas, C., Ho, D., Fan, W., Du, H., and Xiao, X. (2016) Oxidative stress, innate immunity, and age-related macular degeneration, AIMS Mol. Sci., 3, 196–221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xu, H., and Chen, M. (2016) Targeting the complement system for the management of retinal inflammatory and degenerative diseases, Eur. J. Pharmacol., 787, 94–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kolosova.

Additional information

Original Russian Text © D. V. Telegina, O. S. Kozhevnikova, N. G. Kolosova, 2018, published in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1272–1282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegina, D.V., Kozhevnikova, O.S. & Kolosova, N.G. Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration. Biochemistry Moscow 83, 1009–1017 (2018). https://doi.org/10.1134/S000629791809002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791809002X

Keywords

Navigation