Skip to main content
Log in

Analysis of four circulating complexes of insulin-like growth factor binding proteins in human blood during aging

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The primary role of insulin-like growth factor binding proteins (IGFBPs) is to regulate availability of IGFs for interacting with receptors, but IGFBPs perform IGF-independent actions as well. The availability and activity of IGFBPs in the circulation is influenced primarily by their concentration and structural modifications, but possibly also by interaction with major plasma proteins such as transferrin, alpha-2-macroglobulin (α2M), and fibrinogen. Four types of circulating IGFBP complexes were examined in this study by immuno- and ligand-binding assays in adults of different age. The amounts of IGFBP-3/transferrin and IGFBP-1/fibrinogen complexes were similar in middle- and old-aged persons, whereas the amounts of IGFBP-1 (or -2)/α2M monomer complexes were lower in the old-aged group and negatively correlated with total IGFBP-1 (or -2) amounts in blood. In contrast to IGFBP-1, IGFBP-2 was present in significantly greater quantities in complexes with α2M dimer than α2M monomer in older individuals. IGFBP complexes did not bind 125I-labeled IGF-I in amounts detectable by ligand blotting. According to the results of this study, the quantities of IGFBP-1 and IGFBP-2, which interact with α2M, are age-dependent and, in the case of complexes with α2M monomer, they are negatively correlated with the total circulating levels of these two IGFBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α2M:

alpha-2-macroglobulin

BMI:

body mass index

DU:

densitometric unit

IGF:

insulin-like growth factor

IGFBP:

IGF-binding protein

References

  1. Ashpole, N. M., Sanders, J. E., Hodges, E. L., Yan, H., and Sonntag, W. E. (2015) Growth hormone, insulin-like growth factor-1 and the aging brain, Exp. Gerontol., 68, 76–81.

    Article  CAS  PubMed  Google Scholar 

  2. Bartke, A., List, E. O., and Kopchick, J. J. (2016) The somatotropic axis and aging: benefits of endocrine defects, Growth Horm. IGF Res., 27, 41–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sperling, M. A. (2016) Traditional and novel aspects of the metabolic actions of growth hormone, Growth Horm. IGF Res., 28, 69–75.

    Article  CAS  PubMed  Google Scholar 

  4. Juul, A. (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease, Growth Horm. IGF Res., 13, 113–170.

    Article  CAS  PubMed  Google Scholar 

  5. Hoeflich, A., and Russo, V. C. (2015) Physiology and pathophysiology of IGFBP-1 and IGFBP-2–consensus and dissent on metabolic control and malignant potential, Best Pract. Res. Clin. Endocrinol. Metab., 29, 685–700.

    Article  CAS  PubMed  Google Scholar 

  6. Ranke, M. B. (2015) Insulin-like growth factor binding-protein-3 (IGFBP-3), Best Pract. Res. Clin. Endocrinol. Metab., 29, 701–711.

    Article  CAS  PubMed  Google Scholar 

  7. Yu, H., and Rohan, T. (2000) Role of the insulin-like growth factor family in cancer development and progression, J. Nat. Cancer Inst., 92, 1472–1489.

    Article  CAS  PubMed  Google Scholar 

  8. Baxter, R. C. (1991) Insulin-like growth factor (IGF) binding proteins: the role of serum IGFBPs in regulating IGF availability, Acta Paed. Scand., 372 (Suppl.), 107–114.

    Article  CAS  Google Scholar 

  9. Collet, C., and Candy, J. (1998) How many insulin-like growth factor binding proteins? Mol. Cell. Endocrinol., 139, 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, P., Ocrant, I., Fielder, P. J., Neely, E. K., Gargosky, S. E., Deal, C. I., Ceda, G. P., Youngman, O., Pham, H., Lamson, G., et al. (1992) Insulin-like growth factors (IGFs): implications for aging, Psychoneuroendocrinology, 17, 335–342.

    Article  CAS  PubMed  Google Scholar 

  11. Miljuš, G., Petrović, M., and Nedić, O. (2012) Isolation of complexes formed between insulin-like growth factor-binding protein-3 and transferrin from human serum, J. Serb. Chem. Soc., 77, 607–617.

    Article  Google Scholar 

  12. Weinzimer, S. A., Gibson, T. B., Collett-Solberg, P. F., Khare, A., Liu, B., and Cohen, P. (2001) Transferrin is an insulin-like growth factor-binding protein-3 binding protein, J. Clin. Endocrinol. Metab., 86, 1806–1813.

    CAS  PubMed  Google Scholar 

  13. Šunderić, M., Miljuš, G., and Nedić, O. (2013) Interaction of insulin-like growth factor-binding protein 2 with α2-macroglobulin in the circulation, Protein J., 32, 138–142.

    Article  PubMed  Google Scholar 

  14. Westwood, M., Aplin, J. D., Collinge, I. A., Gill, A., White, A., and Gibson, J. M. (2001) Document α2-macroglobulin: a new component in the insulin-like growth factor/insulin-like growth factor binding protein-1 axis, J. Biol. Chem., 276, 41668–41674.

    Article  CAS  PubMed  Google Scholar 

  15. Gligorijević, N., and Nedić, O. (2016) Interaction between fibrinogen and insulin-like growth factor-binding protein-1 in human plasma under physiological conditions, Biochemistry (Moscow), 81, 135–140.

    Article  Google Scholar 

  16. Fimmel, S., Borchelt, M., Kage, A., and Kottgen, E. (1993) Trace elements and carrier proteins in the aged, Arch. Gerontol. Geriatr., 19 (Suppl. 1), 67–74.

    Google Scholar 

  17. Simmonds, M. J., Meiselman, H. J., and Baskurt, O. K. (2013) Blood rheology and aging, J. Geriatric Cardiol., 10, 291–301.

    Google Scholar 

  18. Tunstall, A., Merriman, J. M., Milne, I., and James, K. (1975) Normal and pathological serum levels of α2-macroglobulins in men and mice, J. Clin. Pathol., 28, 133–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., and Stadtman, E. R. (1990) Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 186, 464–478.

    Article  CAS  PubMed  Google Scholar 

  20. Hossenlopp, P., Seurin, D., Segovia-Quinson, B., and Binoux, M. (1986) Identification of an insulin-like growth factor-binding protein in human cerebrospinal fluid with a selective affinity for IGF-II, FEBS Lett., 208, 439–444.

    Article  CAS  PubMed  Google Scholar 

  21. Feelders, R. A., Kuiper-Kramer, E. P. A., and Van Eijk, H. G. (1999) Structure, function and clinical significance of transferrin receptors, Clin. Chem. Lab. Med., 37, 1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Rehman, A. A., Ahsan, H., and Khan, F. H. (2013) Alpha-2-macroglobulin: a physiological guardian, J. Cell. Physiol., 228, 1665–1675.

    Article  CAS  PubMed  Google Scholar 

  23. Chapin, J. C., and Hajjar, K. A. (2015) Fibrinolysis and the control of blood coagulation, Blood Rev., 29, 17–24.

    Article  CAS  PubMed  Google Scholar 

  24. Kovacs, D. M. (2000) α2-Macroglobulin in late-onset Alzheimer’s disease, Exp. Gerontol., 35, 473–479.

    Article  CAS  PubMed  Google Scholar 

  25. Mettenburg, J. M., Webb, D. J., and Gonias, S. L. (2002) Distinct binding sites in the structure of α2-macroglobulin mediate the interaction with β-amyloid peptide and growth factors, J. Biol. Chem., 277, 13338–13345.

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharjee, G., Asplin, I. R., Wu, S. M., Gawdi, G., and Pizzo, S. V. (2000) The conformation-dependent interaction of α2-macroglobulin with vascular endothelial growth factor: a novel mechanism of α2-macroglobulin/growth factor binding, J. Biol. Chem., 275, 26806–26811.

    CAS  PubMed  Google Scholar 

  27. Lin, L., and Hu, K. (2014) LRP-1: functions, signaling and implications in kidney and other diseases, Int. J. Mol. Sci., 15, 22887–22901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ata, R., and Antonescu, C. N. (2017) Integrins and cell metabolism: an intimate relationship impacting cancer, Int. J. Mol. Sci., 18, 189.

    Article  PubMed Central  Google Scholar 

  29. Fougere, B., Boulanger, E., Nourhashemi, F., Guyonnet, S., and Cesari, M. (2017) Chronic inflammation: accelerator of biological aging, J. Gerontol. A Biol. Sci. Med. Sci., 72, 1218–1225.

    PubMed  Google Scholar 

  30. Thieme, R., Kurz, S., Kolb, M., Debebe, T., Holtze, S., Morhart, M., Huse, K., Szafranski, K., Platzer, M., Hildebrandt, T. B., and Birkenmeier, G. (2015) Analysis of alpha-2 macroglobulin from the long-lived and cancer-resistant naked mole rat and human plasma, PLoS One, 10.

    Google Scholar 

  31. Gianuzzi, X., Palma-Ardiles, G., Hernandez-Fernandez, W., Pasupuleti, V., Hernandez, A. V., and Perez-Lopez, F. R. (2016) Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: a systematic review and meta-analysis, Maturitas, 94, 22–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Nedić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedić, O., Šunderić, M., Gligorijević, N. et al. Analysis of four circulating complexes of insulin-like growth factor binding proteins in human blood during aging. Biochemistry Moscow 82, 1200–1206 (2017). https://doi.org/10.1134/S0006297917100133

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100133

Keywords

Navigation