Skip to main content
Log in

N-acetyl-L-cysteine in the presence of Cu2+ induces oxidative stress and death of granule neurons in dissociated cultures of rat cerebellum

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Addition into the culture medium of the antioxidant N-acetylcysteine (NAC, 1 mM) in the presence of Cu2+ (0.0005-0.001 mM) induced intensive death of cultured rat cerebellar granule neurons, which was significantly decreased by the zinc ion chelator TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine). However, the combined action of NAC and Zn2+ did not induce destruction of the neurons. Measurement of the relative intracellular concentration of Zn2+ with the fluorescent probe FluoZin-3 AM or of free radical production using a CellROX Green showed that incubation of the culture for 4 h with Cu2+ and NAC induced an intensive increase in the fluorescence of CellROX Green but not of FluoZin-3. Probably, the protective effect of TPEN in this case could be mediated by its ability to chelate Cu2+. Incubation of cultures in a balanced salt solution in the presence of 0.01 mM Cu2+ caused neuronal death already after 1 h if the NAC concentration in the solution was within 0.005–0.05 mM. NAC at higher concentrations (0.1–1 mM) together with 0.01mM Cu2+ did not cause the death of neurons. These data imply that the antioxidant NAC can be potentially harmful to neurons even in the presence of nanomolar concentrations of variable valence metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGNs:

cerebellar granule neurons

NAC:

N-acetylcysteine

SkQ1:

10-(6′-plastoquinonyl)decyltriphenylphos-phonium

TPEN:

N,N,N′,N′-tetrakis(2-pyridylmethyl)ethyl-enediamine

References

  1. Burlakova, E. B., Krashakov, S. A., and Khrapova, N. G. (1998) The role of tocopherols in peroxide oxidation of lipids in biomembranes, Biol. Membr. (Moscow), 15, 137–167.

    CAS  Google Scholar 

  2. Keaney, J. F., Simon, D. I., and Freedman, J. E. (1999) Vitamin E and vascular homeostasis: implications for atherosclerosis, FASEB J., 13, 965–975.

    CAS  PubMed  Google Scholar 

  3. Lankin, V. Z., Tikhaze, A. K., and Belenkov, Y. N. (2001) Free Radical Processes in Norm and Pathological States [in Russian], Moscow.

    Google Scholar 

  4. Okunevich, I. V., and Sapronov, N. S. (2004) Antioxidants: efficiency of natural and synthetic compounds in the combined therapy of cardiovascular diseases, Rev. Clin. Pharmacol. Drug Ther., 3, 2–17.

    Google Scholar 

  5. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plasto-quinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 12, 1273–1287.

    Article  Google Scholar 

  6. Ju, T. C., Chen, H. M., Chen, Y. C., Chang, C. P., Chang, C., and Chern, Y. (2014) AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington’s disease, Biochim. Biophys. Acta, 1842, 1668–1680.

    Article  CAS  PubMed  Google Scholar 

  7. Giraldo, E., Lloret, A., Fuchsberger, T., and Vina, J. (2014) Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E, Redox Biol., 2, 873–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thibodeau, P. A., Kocsis-Bedard, S., Courteau, J., Niyonsenga, T., and Paquette, B. (2001) Thiols can either enhance or suppress DNA damage induction by catechol estrogens, Free Radic. Biol. Med., 30, 62–73.

    Article  CAS  PubMed  Google Scholar 

  9. Solovieva, M. E., Soloviev, V. V., Faskhutdinova, A. A., Kudryavtsev, A. A., and Akatov, B. S. (2007) Prooxidant and cytotoxic action of N-acetylcysteine and glutathione combined with vitamin B12, Tsitologiya, 49, 7078.

    Google Scholar 

  10. Cartwright, G. E., and Wintrobe, M. M. (1964) Copper metabolism in normal subjects, Am. J. Clin. Nutr., 14, 224–232.

    CAS  PubMed  Google Scholar 

  11. Linder, M. C., and Goode, C. A. (1991) Biochemistry of Copper, Plenum Press, N. Y.

    Book  Google Scholar 

  12. Cordato, D. J., Fulham, M. J., and Yiannikas, C. (1998) Pretreatment and post-treatment positron emission tomographic scan imaging in a 20-year-old patient with Wilson’s disease, Mov. Disord., 13, 162–166.

    Article  CAS  PubMed  Google Scholar 

  13. Stelmashook, E. V., Genrikhs, E. E., Novikova, S. V., Barskov, I. V., Gudasheva, T. A., Seredenin, S. B., Khaspekov, L. G., and Isaev, N. K. (2015) Behavioral effect of dipeptide NGF mimetic GK-2 in an in vivo model of rat traumatic brain injury and its neuroprotective and regenerative properties in vitro, Int. J. Neurosci., 125, 375–379.

    Article  CAS  PubMed  Google Scholar 

  14. Isaev, N. K., Stelmashook, E. V., Dirnagl, U., Plotnikov, E. Y., Kuvshinova, E. A., and Zorov, D. B. (2008) Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons, Biochemistry (Moscow), 73, 149–155.

    Article  CAS  Google Scholar 

  15. Gallo, V., Ciotti, M. T., Aloisi, F., and Levi, G. (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture, Proc. Natl. Acad. Sci. USA, 79, 7919–7923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCaslin, P. P., and Morgan, W. W. (1987) Cultured cere-bellar cells as an in vitro model of excitatory amino acid receptor function, Brain Res., 417, 380–384.

    Article  CAS  PubMed  Google Scholar 

  17. Stelmashook, E. V., Novikova, S. V., and Isaev, N. K. (2010) Glutamine effect on cultured granule neuron death induced by glucose deprivation and chemical hypoxia, Biochemistry (Moscow), 75, 1039–1044.

    Article  CAS  Google Scholar 

  18. Stelmashook, E. V., Isaev, N. K., Plotnikov, E. Y., Uzbekov, R. E., Alieva, I. B., Arbeille, B., and Zorov, D. B. (2009) Effect of transitory glucose deprivation on mitochondrial structure and functions in cultured cerebellar granule neurons, Neurosci. Lett., 461, 140–144.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y., Lu, L., Hettinger, C. L., Dong, G., Zhang, D., Rezvani, K., Wang, X., and Wang, H. (2014) Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice, J. Neurosci., 34, 2813–2821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harms, C., Lautenschlager, M., Bergk, A., Katchanov, J., Freyer, D., Kapinya, K., Herwig, U., Megow, D., Dirnagl, U., Weber, J. R., and Hortnagl, H. (2001) Differential mechanisms of neuroprotection by 17 beta-estradiol in apoptotic versus necrotic neurodegeneration, J. Neurosci., 21, 2600–2609.

    CAS  PubMed  Google Scholar 

  21. Isaev, N. K., Genrikhs, E. E., Aleksandrova, O. P., Zelenova, E. A., and Stelmashook, E. V. (2016) Glucose deprivation stimulates Cu2+ toxicity in cultured cerebellar granule neurons and Cu2+-dependent zinc release, Toxicol. Lett., 250/251, 29–34.

    Article  Google Scholar 

  22. He, Y. Y., and Hader, D. P. (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobac-terium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine, J. Photochem. Photobiol. B, 66, 115–124.

    Article  CAS  PubMed  Google Scholar 

  23. Qanungo, S., Wang, M., and Nieminen, A. L. (2004) N-Acetyl-L-cysteine enhances apoptosis through inhibition of nuclear factor κB in hypoxic murine embryonic fibroblasts, J. Biol. Chem., 279, 50455–50464.

    Article  CAS  PubMed  Google Scholar 

  24. Tartier, L., McCarey, Y. L., Biaglow, J. E., Kochevar, I. E., and Held, K. D. (2000) Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mitochondria, Cell Death Differ., 7, 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, M., Yang, S., Elliott, M. H., Fu, D., Wilson, K., Zhang, J., Du, M., Chen, J., and Lyons, T. (2012) Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Müller cells, Invest. Ophthalmol. Vis. Sci., 53, 4595–4604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuse, Y., Ogawa, K., Tsuruma, K., Shimazawa, M., and Hara, H. (2014) Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light, Sci. Rep., 4, 5223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castro, P. A., Ramirez, A., Sepulveda, F. J., Peters, C., Fierro, H., Waldron, J., Luza, S., Fuentealba, J., Munoz, F. J., De Ferrari, G. V., Bush, A. I., Aguayo, L. G., and Opazo, C. M. (2014) Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neurons, Front Aging Neurosci., 6, 319.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Armstrong, C., Leong, W., and Lees, G. J. (2001) Com-parative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu+2), iron (Fe+3) and zinc in the hippocampus, Brain Res., 892, 51–62.

    Article  CAS  PubMed  Google Scholar 

  29. Jahanban-Esfahlan, A., Panahi-Azar, V., and Sajedi, S. (2015) Spectroscopic and molecular docking studies on the interaction between N-acetylcysteine and bovine serum albumin, Biopolymers, 103, 638–645.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X. F., and Cynader, M. S. (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity, J. Neurosci., 21, 3322–3331.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Stelmashook or N. K. Isaev.

Additional information

Original Russian Text © E. V. Stelmashook, E. E. Genrikhs, M. R. Kapkaeva, E. A. Zelenova, N. K. Isaev, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1530-1537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelmashook, E.V., Genrikhs, E.E., Kapkaeva, M.R. et al. N-acetyl-L-cysteine in the presence of Cu2+ induces oxidative stress and death of granule neurons in dissociated cultures of rat cerebellum. Biochemistry Moscow 82, 1176–1182 (2017). https://doi.org/10.1134/S0006297917100108

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100108

Keywords

Navigation