Skip to main content
Log in

Molecular and cellular mechanisms of sporadic Alzheimer’s disease: Studies on rodent models in vivo

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer’s disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer’s disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer’s disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., and Hyman, B. T. (1997) APPSw transgenic mice develop age-related A beta deposits and neurophil abnormalities, but no neuronal loss in CA1, J. Neuropathol. Exp. Neurol., 56, 965–973.

    Article  CAS  PubMed  Google Scholar 

  2. Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., Rademakers, R., Das, P., Parisi, J. E., Graff-Radford, N. R., Petersen, R. C., Dickson, D. W., and Bu, G. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinico-pathological features in sporadic and familial Alzheimer’s disease, Brain, 137, 1533–1549.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science, 219, 1184–1190.

    Article  CAS  PubMed  Google Scholar 

  4. Winkler, J., Thal, L. J., Gage, F. H., and Fisher, L. J. (1998) Cholinergic strategies for Alzheimer’s disease, J. Mol. Med., 76, 555–567.

    Article  CAS  PubMed  Google Scholar 

  5. McDonald, M. P., and Overmier, J. B. (1998) Present imperfect: a critical review of animal models of the mnemonic impairments in Alzheimer’s disease, Neurosci. Biobehav. Rev., 22, 99–120.

    Article  CAS  PubMed  Google Scholar 

  6. Hanin, A., Fisher, A., Hortnagl, H., Leventer, S. M., Potter, P. E., and Walsh, T. J. (1987) Ethylcholine aziridini-um (AF64A; ECMA) and other potential cholinergic neu-ron-specific neurotoxins, in Psychopharmacology: The Third Generation of Progress (Meltzer, H. Y., ed.) Raven Press, N. Y., pp. 341–349.

    Google Scholar 

  7. Chrobak, J. J., Hanin, I., Schmechel, D. E., and Walsh, T. J. (1988) AF64A-induced working memory impairment: behavioral, neurochemical and histological correlates, Brain Res., 463, 107–117.

    Article  CAS  PubMed  Google Scholar 

  8. Lorens, S. K., Kindel, G., Dong, X. W., Lee, J. M., and Hanin, I. (1991) Septal choline acetyltransferase immunoreactive neurons: dose-dependent effects of AF64A, Brain Res. Bull., 26, 965–971.

    Article  CAS  PubMed  Google Scholar 

  9. Hanin, I. (1996) The AF64A model of cholinergic hypo-function: an update, Life Sci., 58, 1955–1964.

    Article  CAS  PubMed  Google Scholar 

  10. Eva, C., Fabrazzo, M., and Costa, E. (1987) Changes of cholinergic, noradrenergic and serotonergic synaptic transmis-sion indices by ethylcholine aziridinium ion (AF64A) infused intraventricularly, J. Pharmacol. Exp. Ther., 222, 181–186.

    Google Scholar 

  11. Walsh, T. J., Tilson, H. A., DeHaven, D. L., Mailman, R. B., Fisher, A., and Hanin, I. (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat, Brain Res., 321, 91–102.

    Article  CAS  PubMed  Google Scholar 

  12. Gulyaeva, N. V., Lazareva, N. A., Libe, M. L., Mitrokhina, O. S., Onufriev, M. V., Stepanichev, M. Y., Chernysevskaya, I. A., and Walsh, T. J. (1996) Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A), Brain Res., 726, 174–180.

    Article  CAS  PubMed  Google Scholar 

  13. Stepanichev, M. Y., and Gulyaeva, N. V. (2014) Injection models of Alzheimer’s disease as an approach to investiga-tion of cellular mechanisms of pathogenesis: neurodegen-erative changes, inflammation, neurogenesis disorders, in Neurodegenerative Diseases: From the Genome to the Whole Organism (Ugryumov, M. V., ed.) [in Russian], Vol. 2, Nauchnyi Mir, Moscow, pp. 352–379.

    Google Scholar 

  14. Hanin, I. (1997) Molecular mechanisms of AF64A toxicity in the cholinergic neuron, in Progress in Alzheimer’s and Parkinson’s Diseases (Fisher, A., ed.) Plenum Press, N. Y.-London, pp. 675–680.

    Google Scholar 

  15. Rinner, W. A., Pifl, C., Lassmann, H., and Hortnagl, H. (1997) Induction of apoptosis in vitro and in vivo by the cholinergic neurotoxin ethylcholine aziridinium, Neuroscience, 79, 535–542.

    Article  CAS  PubMed  Google Scholar 

  16. Simon, H. U., Haj-Yehia, A., and Levi-Schaffer, F. (2000) Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5, 415–418.

    Article  CAS  PubMed  Google Scholar 

  17. Wortwein, G., Stackman, R. W., and Walsh, T. J. (1994) Vitamin E prevents the place learning deficit and the cholinergic hypofunction induced by AF64A, Exp. Neurol., 125, 15–21.

    Article  CAS  PubMed  Google Scholar 

  18. Emerich, D. F., and Walsh, T. J. (1990) Ganglioside AGF2 promotes task-specific recovery and attenuates the cholinergic hypofunction induced by AF64A, Brain Res., 572, 299–307.

    Article  Google Scholar 

  19. Emerich, D. F., Black, B. A., Kesslak, J. P., Cotman, C. W., and Walsh, T. J. (1992) Transplantation of fetal cholinergic neurons into the hippocampus attenuates the cognitive and neurochemical deficits induced by AF64A, Brain Res. Bull., 28, 219–226.

    Article  CAS  PubMed  Google Scholar 

  20. Moiseeva, Y. V., Onufriev, M. V., Lazareva, N. A., Stepanichev, M. Y., and Gulyaeva, N. V. (2001) Free radical mechanisms of septo-hippocampal neurodegeneration caused by cholinotoxin AF64A in rats in vivo, Neirokhimiya, 18, 287–289.

    CAS  Google Scholar 

  21. Lautenschlager, M., Onufriev, M. V., Gulyaeva, N. V., Harms, C., Freyer, D., Sehmsdorf, U., Ruscher, K., Moiseeva, Y. V., Arnswald, A., Victorov, I., Dirnagl, U., Weber, J. R., and Hortnagl, H. (2000) Role of nitric oxide in the ethylcholine aziridinium model of delayed apoptotic neurodegeneration in vivo and in vitro, Neuroscience, 97, 383–393.

    Article  CAS  PubMed  Google Scholar 

  22. Stepanichev, M. Y., Libe, M. L., Chernyshevskaya, I. A., Moiseenok, A. G., and Gulyaeva, N. V. (2007) Delayed expression of NADPH-diaphorase in rat brain after administration of the cholinotoxin AF64A, Neurochem. J., 1, 244–248.

    Article  Google Scholar 

  23. Lautenshlager, M., Arnswald, A., Freyer, D., Weber, J. R., and Hortnagl, H. (1997) The AF64A model of cholinergic hypofunction: role of nitric oxide in AF64A-mediated neu-rodegeneration, in Progress in Alzheimer’s and Parkinson’s Diseases (Fisher, A., ed.) Plenum Press, N. Y.-London, pp. 681–686.

    Google Scholar 

  24. Wiley, R. G., Oeltmann, T. N., and Lappi, D. A. (1991) Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor, Brain Res., 562, 149–153.

    Article  CAS  PubMed  Google Scholar 

  25. Waite, J. J., Chen, A. D., Wardlow, M. L., Wiley, R. G., Lappi, D. A., and Thal, L. J. (1995) 192-Immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells, Neuroscience, 65, 463–476.

    Article  CAS  PubMed  Google Scholar 

  26. Rossner, S., Hartig, W., Schliebs, R., Bruckner, G., Brauer, K., Perez-Polo, J. R., Wiley, R. G., and Bigl, V. (1995) 192IgG-saporin immunotoxin-induced loss of cholinergic cells differentially activates microglia in rat basal forebrain nuclei, J. Neurosci. Res., 41, 335–346.

    Article  CAS  PubMed  Google Scholar 

  27. Seeger, G., Hartig, W., Rossner, S., Schliebs, R., Bruckner, G., Bigl, V., and Brauer, K. (1997) Electron microscopic evidence for microglial phagocytic activity and cholinergic cell death after administration of the immunotoxin 192IgG-saporin in rat, J. Neurosci. Res., 48, 465–476.

    Article  CAS  PubMed  Google Scholar 

  28. Baxter, M. G., Bucci, D. J., Sobel, T. J., Williams, M. J., Gorman, L. K., and Gallagher, M. (1996) Intact spatial learning following lesions of basal forebrain cholinergic neurons, Neuroreport, 7, 1417–1420.

    Article  CAS  PubMed  Google Scholar 

  29. Bassant, M. H., Jouvenceau, A., Apartis, E., Poindessous-Jazat, F., Dutar, P., and Billard, J. M. (1998) Immunolesion of the cholinergic basal forebrain: effects on functional properties of hippocampal and septal neurons, Int. J. Dev. Neurosci., 16, 613–632.

    Article  CAS  PubMed  Google Scholar 

  30. Cooper-Kuhn, C. M., Winkler, J., and Kuhn, H. G. (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat, J. Neurosci. Res., 77, 155–165.

    Article  CAS  PubMed  Google Scholar 

  31. Wrenn, C. C., and Wiley, R. G. (1998) The behavioral functions of the cholinergic basal forebrain: lessons from 192IgG-saporin, Int. J. Dev. Neurosci., 16, 595–602.

    Article  CAS  PubMed  Google Scholar 

  32. Berchtold, N. C., Kesslak, J. P., and Cotman, C. W. (2002) Hippocampal brain-derived neurotrophic factor gene regu-lation by exercise and the medial septum, J. Neurosci. Res., 68, 511–521.

    Article  CAS  PubMed  Google Scholar 

  33. Paban, V., Farioli, F., Romier, B., Chambon, C., and Alescio-Lautier, B. (2010) Gene expression profile in rat hippocampus with and without memory deficit, Neurobiol. Learning Memory, 94, 42–56.

    Article  CAS  Google Scholar 

  34. Paban, V., Chambon, C., Manrique, C., Touzet, C., and Alescio-Lautier, B. (2011) Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: environmental enrichment as potential therapeutic agent, Neurobiol. Aging, 32, 470–485.

    Article  CAS  PubMed  Google Scholar 

  35. Paban, V., Chambon, C., Farioli, F., and Alescio-Lautier, B. (2011) Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult, Neurobiol. Learning Memory, 95, 441–452.

    Article  CAS  Google Scholar 

  36. Santamaria, J., Khalfallah, O., Sauty, C., Brunet, I., Sibieude, M., Mallet, J., Berrard, S., and Lecomte, M. J. (2009) Silencing of choline acetyltransferase expression by lentivirus-mediated RNA interference in cultured cells and in the adult rodent brain, J. Neurosci. Res., 87, 532–544.

    Article  CAS  PubMed  Google Scholar 

  37. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003) APP processing and synaptic function, Neuron, 37, 925–937.

    Article  CAS  PubMed  Google Scholar 

  38. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 416, 535–539.

    Article  CAS  PubMed  Google Scholar 

  39. Morgan, D. (2007) Amyloid, memory and neurogenesis, Exp. Neurol., 205, 330–335.

    Article  CAS  PubMed  Google Scholar 

  40. Hardy, J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal, J. Neurochem., 110, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  41. Gulyaeva, N. V., and Stepanichev, M. Yu. (2010) Abeta(25-35) as proxyholder for amyloidogenic peptides: in vivo evidence, Exp. Neurol., 222, 6–9.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, S. Y., Harding, J. W., and Barnes, C. D. (1996) Neuropathology of synthetic beta-amyloid peptide analogs in vivo, Brain Res., 715, 44–50.

    Article  CAS  PubMed  Google Scholar 

  43. Kowall, N., McKee, A., Yankner, B., and Beal, M. F. (1992) In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment, Neurobiol. Aging, 13, 537–542.

    Article  CAS  PubMed  Google Scholar 

  44. Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, I. I., and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35), J. Neurosci. Res., 71, 110–120.

    Article  CAS  PubMed  Google Scholar 

  45. Maurice, T., Lockhart, B., and Privat, A. (1996) Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction, Brain Res., 706, 181–189.

    Article  CAS  PubMed  Google Scholar 

  46. Delobette, S., Privat, A., and Maurice, T. (1997) In vitro aggregation facilities beta-amyloid peptide-(25-35)-induced amnesia in the rat, Eur. J. Pharmacol., 319, 1–4.

    Article  CAS  PubMed  Google Scholar 

  47. Yamaguchi, Y., and Kawashima, S. (2001) Effects of β-amyloid-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat, Eur. J. Pharmacol., 412, 265–272.

    Article  CAS  PubMed  Google Scholar 

  48. Stepanichev, M., Lazareva, N., Tukhbatova, G., Salozhin, S., and Gulyaeva, N. (2014) Transient disturbances in con-textual fear memory induced by Aβ(25-35) in rats are accompanied by cholinergic dysfunction, Behav. Brain Res., 259, 152–157.

    Article  CAS  PubMed  Google Scholar 

  49. Berrard, S., Varoqui, H., Cervini, R., Israel, M., Mallet, J., and Diebler, M. F. (1995) Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter, J. Neurochem., 65, 939–942.

    Article  CAS  PubMed  Google Scholar 

  50. Gordon, R. Y., Makarova, E. G., Podolski, I. Y., Rogachevsky, V. V., and Kordonets, O. L. (2012) Impairment of protein synthesis is an early effect of amy-loid-β in neurons, Neurochem. J., 29, 139–150.

    Google Scholar 

  51. Ding, Q., Markesbery, W. R., Chen, Q., Li, F., and Keller, J. N. (2005) Ribosome dysfunction is an early event in Alzheimer’s disease, J. Neurosci., 25, 9171–9175.

    Article  CAS  PubMed  Google Scholar 

  52. Shan, X., Chang, Y., and Lin, C. L. (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression, FASEB J., 21, 2753–2764.

    Article  CAS  PubMed  Google Scholar 

  53. Stepanichev, M. Y., Zdobnova, I. M., Zarubenko, I. I., Lazareva, N. A., and Gulyaeva, N. V. (2004) Amyloid-beta(25-35)-induced memory impairments correlate with cell loss in rat hippocampus, Physiol. Behav., 80, 647–655.

    Article  CAS  PubMed  Google Scholar 

  54. Virok, D. P., Simon, D., Bozso, Z., Rajko, R., Datki, Z., Balint, E., Szegedi, V., Janaky, T., Penke, B., and Fulop, L. (2011) Protein array based interactome analysis of amyloid-β indicates an inhibition of protein translation, J. Proteome Res., 10, 1538–1547.

    Article  CAS  PubMed  Google Scholar 

  55. Frautschy, S. A., Cole, G. M., and Baird, A. (1992) Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer’s beta-amyloid, Am. J. Pathol., 140, 1389–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hickman, S. E., Allison, E. K., and El Khoury, J. (2008) Microglial dysfunction and defective beta-amyloid clear-ance pathways in aging Alzheimer’s disease mice, J. Neurosci., 28, 8354–8360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qiu, W. Q., Ye, Z., Kholodenko, D., Seubert, P., and Selkoe, D. J. (1997) Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells, J. Biol. Chem., 272, 6641–6646.

    Article  CAS  PubMed  Google Scholar 

  58. Weldon, D., Rogers, S. D., Ghilardi, J. R., Finke, M. P., Cleary, J. P., O’Hare, E., Esler, W. P., Maggio, J. E., and Mantyh, P. W. (1998) Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a selected population of neurons in rat CNS in vivo, J. Neurosci., 18, 2161–2173.

    CAS  PubMed  Google Scholar 

  59. Rogers, J., and Lue, L. F. (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease, Neurochem. Int., 39, 333–340.

    Article  CAS  PubMed  Google Scholar 

  60. Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J., and Lorens, S. A. (1997) Bilateral injections of amyloid-beta 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects, Neurobiol. Aging, 18, 591–608.

    Article  CAS  PubMed  Google Scholar 

  61. Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J., and Lorens, S. A. (1997) Laterality in the histological effects of injections of amyloid-beta 25-35 into the amygdala of young Fischer rats, J. Neuropathol. Exp. Neurol., 56, 714–725.

    Article  CAS  PubMed  Google Scholar 

  62. Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, I. I., and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35), J. Neurosci. Res., 71, 110–120.

    Article  CAS  PubMed  Google Scholar 

  63. Stepanichev, M. Y., Flegontova, O. V., Lazareva, N. A., Egorova, L. K., and Gulyaeva, N. V. (2006) Influence of anti-inflammatory cytokine interleukin-4 on neurodegeneration I rats induced by beta-amyloid peptide, Neirokhimiya, 23, 67–72.

    Google Scholar 

  64. Mitrokhina, O. S., Stepanichev, M., Lazareva, N. A., Moiseeva, Y. V., Onufriev, M. V., and Gulyaeva, N. V. (1999) Effect of intracerebroventricular administration of the (25-35) fragment of beta-amyloid peptide on the lipid peroxidation level in rat brain structures and blood, Dokl. Akad. Nauk, 368, 711–713.

    CAS  PubMed  Google Scholar 

  65. Stepanichev, M. Y., Onufriev, M. V., Yakovlev, A. A., Khrenov, A. I., Peregud, D. I., Vorontsova, O. N., Lazareva, N. A., and Gulyaeva, N. V. (2008) Amyloid-beta (25-35) increases activity of neuronal NO-synthase in rat brain, Neurochem. Int., 52, 1114–1124.

    Article  CAS  PubMed  Google Scholar 

  66. Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., and Greenberg, D. A. (2004) Proc. Natl. Acad. Sci. USA, 101, 343–347.

    Article  CAS  PubMed  Google Scholar 

  67. Hamilton, L. K., Joppe, S. E., Cochard, L., and Fernandes, K. J. (2013) Aging and neurogenesis in the adult forebrain: what we have learned and where we should go from here, Eur. J. Neurosci., 37, 1978–1986.

    Article  PubMed  Google Scholar 

  68. Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W., and Van Praag, H. (2010) When neurogenesis encounters aging and disease, Trends Neurosci., 33, 569–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., and Mattson, M. P. (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease, J. Neurochem., 83, 1509–1524.

    Article  CAS  PubMed  Google Scholar 

  70. Sotthibundhu, A., Li, Q. X., Thangnipon, W., and Coulson, E. J. (2009) Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor, Neurobiol. Aging, 30, 1975–1985.

    Article  CAS  PubMed  Google Scholar 

  71. Li, X., and Zuo, P. (2005) Effects of Abeta25-35 on neurogenesis in the adult mouse subventricular zone and dentate gyrus, Neurol. Res., 27, 218–222.

    Article  CAS  PubMed  Google Scholar 

  72. Stepanichev, M. Y., Moiseeva, Y. V., Lazareva, N. A., Onufriev, M. V., and Gulyaeva, N. V. (2009) Changes of the cell proliferation in the subventricular zone of the brain of adult rats on injection of β-amyloid peptide (25-35), Morfologiya, 135, 13–16.

    CAS  Google Scholar 

  73. Estrada, C., and Murillo-Carretero, M. (2005) Nitric oxide and adult neurogenesis in health and disease, Neuroscientist, 11, 294–307.

    Article  CAS  PubMed  Google Scholar 

  74. Moreno-Lopez, B., Noval, J. A., Gonzalez-Bonet, L., and Estrada, C. (2000) Morphological bases for a role of nitric oxide in adult neurogenesis, Brain Res., 869, 244–250.

    Article  CAS  PubMed  Google Scholar 

  75. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide, Nat. Cell Biol., 3, 193–197.

    Article  CAS  PubMed  Google Scholar 

  76. Murillo-Carretero, M., Ruano, M. J., Matarredona, E. R., Villalobo, A., and Estrada, C. (2002) Antiproliferative effect of nitric oxide on epidermal growth factor-responsive human neuroblastoma cells, J. Neurochem., 83, 119–131.

    Article  CAS  PubMed  Google Scholar 

  77. Salkovic-Petrisic, M., Knezovic, A., Hoyer, S., and Riederer, P. (2013) What have we learned from the strepto-zotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research, J. Neural Transm. (Vienna), 120, 233–252.

    Article  CAS  Google Scholar 

  78. Genrikhs, E. E., Stelmashook, E. V., Golyshev, S. A., Aleksandrova, O. P., and Isaev, N. K. (2017) Streptozotocin causes neurotoxic effect in cultured cerebellar granule neurons, Brain. Res. Bull., 130, 90–94.

    Article  CAS  PubMed  Google Scholar 

  79. Halawany, A. M., Sayed, N. S., Abdallah, H. M., and Dine, R. S. (2017) Protective effects of gingerol on streptozo-tocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta-secretases and APH1a, Sci. Rep., 7, 2902.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bassani, T. B., Bonato, J. M., Machado, M. M. F., Coppola-Segovia, V., Moura, E. L. R., Zanata, S. M., Oliveira, R. M., and Vital, M. A. (2017) Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats, Mol. Neurobiol., 16.

  81. Zakaria, R., Wan Yaacob, W. M., Othman, Z., Long, I., Ahmad, A. H., and Al-Rahbi, B. (2017) Lipopolysaccha-ride-induced memory impairment in rats: a model of Alzheimer’s disease, Physiol. Res., 12.

  82. Houdek, H. M., Larson, J., Watt, J. A., and Rosenberger, T. A. (2014) Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal fore-brain cholinergic cells in the rat brain, Inflamm. Cell Signal., 1, 47.

    Google Scholar 

  83. Willard, L. B., Hauss-Wegrzyniak, B., and Wenk, G. L. (1999) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats, Neuroscience, 88, 193–200.

    Article  CAS  PubMed  Google Scholar 

  84. Arai, H., Furuya, T., Yasuda, T., Miura, M., Mizuno, Y., and Mochizuki, H. (2004) Neurotoxic effects of lipopolysaccha-ride on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice, J. Biol. Chem., 279, 51647–51653.

    Article  CAS  PubMed  Google Scholar 

  85. Desai, R. A., Davies, A. L., Tachrount, M., Kasti, M., Laulund, F., Golay, X., and Smith, K. J. (2016) Cause and prevention of demyelination in a model multiple sclerosis lesion, Ann. Neurol., 79, 591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stepanichev, M., Dygalo, N. N., Grigoryan, G., Shishkina, G. T., and Gulyaeva, N. (2014) Rodent models of depres-sion: neurotrophic and neuroinflammatory biomarkers, Biomed. Res. Int., 932757.

    Google Scholar 

  87. Attems, J., Lintner, F., and Jellinger, K. A. (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study, J. Alzheimer’s Dis., 7, 149–157.

    Article  CAS  Google Scholar 

  88. Van Hoesen, G. W., Augustinack, J. C., Dierking, J., Redman, S. J., and Thangavel, R. (2000) The parahippocampal gyrus in Alzheimer’s disease. Clinical and pre-clinical neuroanatomical correlates, Ann. N. Y. Acad. Sci. USA, 911, 254–274.

    Article  Google Scholar 

  89. Kovacs, T., Cairns, N. J., and Lantos, P. L. (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease, Neuropathol. Appl. Neurobiol., 25, 481–491.

    Article  CAS  PubMed  Google Scholar 

  90. Kus, L., Borys, E., Ping, Chu, Y., Ferguson, S. M., Blakely, R. D., Emborg, M. E., Kordower, J. H., Levey, A. I., and Mufson, E. J. (2003) Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system, J. Comp. Neurol., 463, 341–357.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., and Reitz, A. B. (2000) Beta-amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology, J. Biol. Chem., 275, 5626–5632.

    Article  CAS  PubMed  Google Scholar 

  92. Nagele, R. G., D’Andrea, M. R., Anderson, W. J., and Wang, H. Y. (2002) Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease, Neuroscience, 110, 199–211.

    Article  CAS  PubMed  Google Scholar 

  93. Christen-Zaech, S., Kraftsik, R., Pillevuit, O., Kiraly, M., Martins, R., Khalili, K., and Miklossy, J. (2003) Early olfactory involvement in Alzheimer’s disease, Can. J. Neurol. Sci., 30, 20–25.

    Article  CAS  PubMed  Google Scholar 

  94. Ferreyra-Moyano, H., and Barragan, E. (1989) The olfactory system and Alzheimer’s disease, Int. J. Neurosci., 49, 157–197.

    Article  CAS  PubMed  Google Scholar 

  95. Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 82, 4531–4534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brunjes, P. C., and Frazier, L. L. (1986) Maturation and plasticity in the olfactory system of vertebrates, Brain Res., 396, 1–45.

    Article  CAS  PubMed  Google Scholar 

  97. Ruitenberg, M. J., and Vukovic, J. (2008) Promoting central nervous system regeneration: lessons from cranial nerve I, Restor. Neurol. Neurosci., 26, 183–196.

    PubMed  Google Scholar 

  98. Gomez, C., Brinon, J. G., Orio, L., Colado, M. I., Lawrence, A. J., Zhou, F. C., Vidal, M., Barbado, M. V., and Alonso, J. R. (2007) Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood, J. Neurochem., 100, 924–938.

    Article  CAS  PubMed  Google Scholar 

  99. Gomez, C., Brinon, J. G., Colado, M. I., Orio, L., Vidal, M., Barbado, M. V., and Alonso, J. R. (2006) Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat, Neuroscience, 141, 2117–2128.

    Article  CAS  PubMed  Google Scholar 

  100. Loopuijt, L. D., and Sebens, J. B. (1990) Loss of dopamine receptors in the olfactory bulb of patients with Alzheimer’s disease, Brain Res., 529, 239–234.

    Article  CAS  PubMed  Google Scholar 

  101. Damulin, I. V. (1999) Alzheimer’s disease, Ross. Med. Zh., 6, 45–48.

    Google Scholar 

  102. Gavrilova, S. I. (2002) Alzheimer’s disease: current concepts about diagnosis and therapy, Ross. Med. Zh., 10, 36.

    Google Scholar 

  103. Aleksandrova, I. Y., Kuvichkin, V. V., Kashparov, I. V., Medvinskaya, N. I., Nesterova, I. V., Lunin, S. M., Samokhin, A. N., and Bobkova, N. V. (2004) Increased level of β-amyloid in the brain of bulbectomized mice, Biochemistry (Moscow), 69, 176–180.

    Article  CAS  Google Scholar 

  104. Nesterova, I. V., Gurevich, E. V., Nesterov, V. I., Otmakhova, N. A., and Bobkova, N. V. (1997) Bulbectomy-induced loss of raphe neurons is counteracted by antidepressant treatment, Prog. Neuropsychopharm. Biol. Psychiatry, 21, 127–140.

    Article  CAS  Google Scholar 

  105. Bobkova, N. V., Nesterova, I. V., and Nesterov, V. I. (2001) The state of cholinergic structures in forebrain of bulbectomized mice, Bull. Exp. Biol. Med., 131, 427–431.

    Article  CAS  PubMed  Google Scholar 

  106. Kamynina, A. V., Volpina, O. M., Medvinskaya, N. I., Aleksandrova, I. J., Volkova, T. D., Koroev, D. O., Samokhin, A. N., Nesterova, I. V., Shelukhina, I. V., Kryukova, E. V., Tsetlin, V. I., Ivanov, V. T., and Bobkova, N. V. (2010) Vaccination with peptide 173-193 of acetylcholine receptor α7-subunit prevents memory loss in olfactory bulbectomized mice, J. Alzheimer’s Dis., 21, 249–261.

    Article  CAS  Google Scholar 

  107. Bobkova, N. V., Kamynina, A. V., Medvinskaya, N. I., Koroev, D. O., Nesterova, I. V., Aleksandrova, I. J., Samokhin, A. N., Volkova, T. D., and Volpina, O. M. (2009) Influence of passive immunization with antibodies to the extracellular fragment of α7-ACHR on the Alzheimer’s type neurodegenerative process, Vestn. Nov. Med. Tekhnol., 16, 214–216.

    Google Scholar 

  108. Koliatsos, V. E., Dawson, T. M., Kecojevic, A., Zhou, Y., Wang, Y. F., and Huang, K. X. (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons, Proc. Natl. Acad. Sci. USA, 101, 14264–14269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bobkova, N. V., Nesterova, I. V., Dana, R., Dana, E., Nesterov, V. I., Aleksandrova, I. Y., Medvinskaya, N. I., and Samokhin, A. N. (2004) Morphofunctional changes in neurons in the temporal cortex of the brain in relation to spatial memory in bulbectomized mice after treatment with mineral ascorbates, Neurosci. Behav. Physiol., 34, 671–676.

    Article  CAS  PubMed  Google Scholar 

  110. Han, F., Shioda, N., Moriguchi, S., Qin, Z.-H., and Fukunaga, K. (2008) The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neu-rodegeneration in olfactory bulbectomized mice, Neuroscience, 151, 671–679.

    Article  CAS  PubMed  Google Scholar 

  111. Broekkamp, C. L., O’Connor, W. T., Tonnaer, J. A., Rijk, H. W., and Van Delet, A. M. (1986) Corticosterone, choline acetyltransferase and noradrenaline levels in olfactory bulbectomized rats in relation to changes in passive avoidance acquisition and open field activity, Physiol. Behav., 37, 429–434.

    Article  CAS  PubMed  Google Scholar 

  112. Bobkova, N., Vorobyov, V., Medvinskaya, N., Nesterova, I., Tatarnikova, O., Nekrasov, P., Samokhin, A., Deev, A., Sengpiel, F., Koroev, D., and Volpina, O. (2016) Immunization against specific fragments of neurotrophin p75 receptor protects forebrain cholinergic neurons in the olfac-tory bulbectomized mice, J. Alzheimer’s Dis., 53, 289–301.

    Article  CAS  Google Scholar 

  113. Beck, M., Bigl, V., and Rossner, S. (2003) Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo, Neurochem. Res., 28, 637–644.

    Article  CAS  PubMed  Google Scholar 

  114. Battaglia, F., Wang, H. Y., Ghilardi, M. F., Gashi, E., Quartarone, A., Friedman, E., and Nixon, R. A. (2007) Cortical plasticity in Alzheimer’s disease in humans and rodents, Biol. Psychiatry, 62, 1405–1412.

    Article  CAS  PubMed  Google Scholar 

  115. Reddy, P. H., Mani, G., Park, B. S., Jacques, J., Murdoch, G., Whetsell, W., Jr., Kaye, J., and Manczak, M. (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction, J. Alzheimer’s Dis., 7, 103–117.

    Article  CAS  Google Scholar 

  116. Novoselova, E. B., Bobkova, N. V., Sinotova, O. A., Ogai, V. B., Glushkova, E. B., Medvinskaya, N. I., and Samokhin, A. N. (2003) The immune status of bulbectomized mice, Dokl. Biol. Sci., 393, 505–507.

    Article  CAS  PubMed  Google Scholar 

  117. Wynn, Z. J., and Cummings, J. L. (2004) Cholinesterase inhibitor therapies and neuropsychiatric manifestations of Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 17, 100–108.

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto, T., Jin, J., and Watanabe, S. (1997) Characteristics of memory dysfunction in olfactory bulbectomized rats and the effects of cholinergic drugs, Behav. Brain Res., 83, 57–62.

    Article  CAS  PubMed  Google Scholar 

  119. Upton, N., Chuang, T. T., Hunter, A. J., and Virley, D. J. (2008) 5-HT(6) receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease, Neurotherapeutics, 5, 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Avetisyan, A. V., Samokhin, A. N., Alexandrova, I. Y., Zinovkin, R. A., Simonyan, R. A., and Bobkova, N. V. (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of Alzheimer’s disease, Biochemistry (Moscow), 81, 615–623.

    Article  CAS  Google Scholar 

  121. Smith, D. H., Chen, X. H., Iwata, A., and Graham, D. I. (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans, J. Neurosurg., 8, 1072–1077.

    Article  Google Scholar 

  122. Selkoe, D. (2001) Alzheimer’s disease: genes, proteins, and therapy, Physiol. Rev., 81, 741–766.

    CAS  PubMed  Google Scholar 

  123. Vetrivel, K. S., and Thinakaran, G. (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellu-lar compartments, Neurology, 66, 69–73.

    Article  Google Scholar 

  124. Chyung, J. H., and Selkoe, D. J. (2003) Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid β-protein at the cell surface, J. Biol. Chem., 278, 51035–51043.

    Article  CAS  PubMed  Google Scholar 

  125. Marin, N., Romero, B., Bosch-Morell, F., Llansola, M., Felipo, V., Roma, J., and Romero, F. J. (2000) Beta-amyloid-induced activation of caspase-3 in primary cultures of rat neurons, Mech. Ageing Dev., 119, 63–67.

    Article  CAS  PubMed  Google Scholar 

  126. Pentzek, M., Grass-Kapanke, B., and Ihl, R. (2007) Odor identification in Alzheimer’s disease and depression, Aging Clin. Exp. Res., 19, 255–258.

    Article  PubMed  Google Scholar 

  127. Song, C., and Leonard, B. E. (2005) The olfactory bulbectomized rat as a model of depression, Neurosci. Biobeh. Rev., 29, 627–647.

    Article  Google Scholar 

  128. Meyerson, L. R., Wennogle, L. P., Abel, M. S., Coupet, J., Lippa, A. S., Rauh, C. E., and Beer, B. (1982) Human brain receptor alterations in suicide victims, Pharmacol. Biochem. Behav., 17, 159–163.

    Article  CAS  PubMed  Google Scholar 

  129. Otmakhova, N. A., Gurevich, E. V., Katkov, Y. A., Nesterova, I. V., and Bobkova, N. V. (1992) Dissociation of multiple behavioral effects between olfactory bulbectomized C57Bl/6J and DBA/2J mice, Physiol. Behav., 52, 441–448.

    Article  CAS  PubMed  Google Scholar 

  130. Gurevich, E. V., Aleksandrova, I. A., Otmakhova, N. A., Katkov, Y. A., Nesterova, I. V., and Bobkova, N. V. (1993) Effects of bulbectomy and subsequent antidepressant treatment on brain 5-HT2 and 5-HT1A receptors in mice, Pharmacol. Biochem. Behav., 45, 65–70.

    Article  CAS  PubMed  Google Scholar 

  131. Sheline, Y. I., West, T., Yarasheski, K., Swarm, R., Jasielec, M. S., Fisher, J. R., Ficker, W. D., Yan, P., Xiong, C., Frederiksen, C., Grzelak, M. V., Chott, R., Bateman, R. J., Morris, J. C., Mintun, M. A., Lee, J. M., and Cirrito, J. R. (2014) An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice, Sci. Transl. Med., 14, 236.

    Google Scholar 

  132. Marine, N., and Boriana, A. (2014) Olfactory markers of depression and Alzheimer’s disease, Neurosci. Biobehav. Rev., 45, 262–270.

    Article  CAS  PubMed  Google Scholar 

  133. Djordjevic, J., Jones-Gotman, M., De Sousa, K., and Chertkow, H. (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease, Neurobiol. Aging, 29, 693–706.

    Article  PubMed  Google Scholar 

  134. Saiz-Sanchez, D., De La Rosa-Prieto, C., Ubeda-Banon, I., and Martinez-Marcos, A. (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease, Anat. Rec., 296, 1413–1423.

    Article  CAS  Google Scholar 

  135. Saiz-Sanchez, D., Flores-Cuadrado, A., Ubeda-Banon, I., De la Rosa-Prieto, C., and Martinez-Marcos, A. (2016) Interneurons in the human olfactory system in Alzheimer’s disease, Exp. Neurol., 276, 13–21.

    Article  CAS  PubMed  Google Scholar 

  136. Wu, N., Rao, X., Gao, Y., Wang, J., and Xu, F. (2013) Amyloid-β deposition and olfactory dysfunction in an Alzheimer’s disease model, J. Alzheimer’s Dis., 37, 699–712.

    CAS  Google Scholar 

  137. Zelaya, M. V., Perez-Valderrama, E., De Morentin, X. M., Tunon, T., Ferrer, I., Luquin, M. R., Fernandez-Irigoyen, J., and Santamaria, E. (2015) Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies, Oncotarget, 24, 39437–39456.

    Article  Google Scholar 

  138. Doorn, K. J., Goudriaan, A., Blits-Huizinga, C., Bol, J. G., Rozemuller, A. J., Hoogland, P. V., Lucassen, P. J., Drukarch, B., Van de Berg, W. D., and Van Dam, A. M. (2014) Increased amoeboid microglial density in the olfactory bulb of Parkinson’s and Alzheimer’s patients, Brain Pathol., 24, 152–165.

    Article  CAS  PubMed  Google Scholar 

  139. Morley, J. E., Armbrecht, H. J., Farr, S. A., and Kumar, V. B. (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease, Biochim. Biophys. Acta, 1822, 650–656.

    Article  CAS  PubMed  Google Scholar 

  140. Ito, K. (2013) Frontiers of model animals for neuro-science: two prosperous aging model animals for promot-ing neuroscience research, Exp. Anim., 62, 275–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Z., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: a genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294–298.

    Article  Google Scholar 

  142. Beregovoy, N. A., Sorokina, N. S., Starostina, M. V., and Kolosova, N. G. (2011) Age-specific peculiarities of formation of long-term post-tetanic potentiation in OXYS rats, Bull. Exp. Biol. Med., 151, 71–73.

    Article  CAS  PubMed  Google Scholar 

  143. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.

    CAS  Google Scholar 

  145. Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., Telegina, D. V., and Kolosova, N. G. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s dis-ease-like pathology, Aging (Albany NY), 11, 2713–2733.

    Article  Google Scholar 

  146. Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E. V., Vitovtov, A. O., and Stefanova, N. A. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mito-chondrial deterioration, Curr. Alzheimer Res., doi: 10.2174/1567205014666170621111033.

    Google Scholar 

  147. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.

    CAS  Google Scholar 

  148. Stefanova, N. A., Korbolina, E. E., Ershov, N. I., Rogaev, E. I., and Kolosova, N. G. (2015) Changes in the transcriptome of the prefrontal cortex of OXYS rats as the signs of Alzheimer’s disease development, Vavilov J. Genet. Breed., 19, 74–82.

    Article  Google Scholar 

  149. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396–1413.

    Article  PubMed  Google Scholar 

  150. Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8–20.

    Article  CAS  PubMed  Google Scholar 

  151. Gerschutz, A., Heinsen, H., and Grunblatt, E., Wagner, A. K., Bartl, J., Meissner, C., Fallgatter, A. J., Al-Sarray, S., Troakes, C., Ferrer, I., Arzberger, N., Deckert, J., Riederer, P., Fischer, T., Tatschner, T., and Monoranu, C. M. (2013) Neuron-specific mitochondrial DNA deletion levels in sporadic Alzheimer’s disease, Curr. Alzheimer Res., 10, 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  152. Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015) Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence accelerated OXYS rats, Biochemistry (Moscow), 80, 596–603.

    Article  CAS  Google Scholar 

  153. Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., and Bateman, R. J. (2013) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease, Science, 330, 1774.

    Article  CAS  Google Scholar 

  154. Kanemitsu, H., Tomiyama, T., and Mori, H. (2003) Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form, Neurosci. Lett., 350, 113–116.

    Article  CAS  PubMed  Google Scholar 

  155. Rudnitskaya, E. A., Maksimova, K. Y., Muraleva, N. A., Logvinov, S. V., Yanshole, L. V., Kolosova, N. G., and Stefanova, N. A. (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 16, 303–316.

    Article  CAS  PubMed  Google Scholar 

  156. Rudnitskaya, E. A., Muraleva, N. A., Maksimova, K. Y., Kiseleva, E., Kolosova, N. G., and Stefanova, N. A. (2015) Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer’s disease, J. Alzheimer’s Dis., 47, 103–116.

    Article  CAS  Google Scholar 

  157. Fefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal. Res., 59, 163–177.

    Article  CAS  Google Scholar 

  158. Tan, D. X., Manchester, L. C., Qin, L., and Reiter, R. J. (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics, Int. J. Mol. Sci., 16, 17.

    Google Scholar 

  159. Rudnitskaya, E. A., Kolosova, N. G., and Stefanova, N. A. (2017) Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats, Biochemistry (Moscow), 82, 318–329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gulyaeva.

Additional information

Original Russian Text © N. V. Gulyaeva, N. V. Bobkova, N. G. Kolosova, A. N. Samokhin, M. Yu. Stepanichev, N. A. Stefanova, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1427-1443.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaeva, N.V., Bobkova, N.V., Kolosova, N.G. et al. Molecular and cellular mechanisms of sporadic Alzheimer’s disease: Studies on rodent models in vivo . Biochemistry Moscow 82, 1088–1102 (2017). https://doi.org/10.1134/S0006297917100029

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100029

Keywords

Navigation