Skip to main content
Log in

EB-family proteins: Functions and microtubule interaction mechanisms

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Microtubules are polymers of tubulin protein, one of the key components of cytoskeleton. They are polar filaments whose plus-ends usually oriented toward the cell periphery are more dynamic than their minus-ends, which face the center of the cell. In cells, microtubules are organized into a network that is being constantly rebuilt and renovated due to stochastic switching of its individual filaments from growth to shrinkage and back. Because of these dynamics and their mechanical properties, microtubules take part in various essential processes, from intracellular transport to search and capture of chromosomes during mitosis. Microtubule dynamics are regulated by many proteins that are located on the plus-ends of these filaments. One of the most important and abundant groups of plus-end-interacting proteins are EB-family proteins, which autonomously recognize structures of the microtubule growing plus-ends, modulate their dynamics, and recruit multiple partner proteins with diverse functions onto the microtubule plus-ends. In this review, we summarize the published data about the properties and functions of EB-proteins, focusing on analysis of their mechanism of interaction with the microtubule growing ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

adenomatous polyposis coli (tumor suppressor protein)

Bim1:

binding microtubules protein 1 (yeast S. cerevisiae EB analog)

CH:

calponin homology domain

EB-proteins:

end-binding proteins (family of proteins binding to growing microtubule ends)

EBH:

EB-homology domain

Mal3:

microtubule integrity protein (yeast S. pombe EB analog)

XMAP215:

Xenopus microtubule-associated protein 215 kDa

References

  1. Hawkins, T., Mirigian, M., Selcuk Yasar, M., and Ross, J. L. (2010) Mechanics of microtubules, J. Biomech., 43, 23–30.

    Article  PubMed  Google Scholar 

  2. Cassimeris, L., Pryer, N. K., and Salmon, E. D. (1988) Realtime observations of microtubule dynamic instability in living cells, J. Cell Biol., 107, 2223–2231.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature, 312, 237–242.

    Article  CAS  PubMed  Google Scholar 

  4. Desai, A., and Mitchison, T. J. (1997) Microtubule poly-merization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83–117.

    Article  CAS  PubMed  Google Scholar 

  5. Satir, P., and Christensen, S. T. (2007) Overview of structure and function of mammalian cilia, Annu. Rev. Physiol., 69, 377–400.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka, E. M., and Kirschner, M. W. (1991) Microtubule behavior in the growth cones of living neurons during axon elongation, J. Cell Biol., 115, 345–363.

    Article  CAS  PubMed  Google Scholar 

  7. Tvorogova, A. V., and Vorob’ev, I. A. (2012) Microtubules suppress blebbing and stimulate lamellae extension in spreading fibroblasts, Tsitologiya, 54, 742–753.

    CAS  Google Scholar 

  8. Li, R., and Gundersen, G. G. (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell, Nat. Rev. Mol. Cell Biol., 9, 860–873.

    Article  CAS  PubMed  Google Scholar 

  9. McIntosh, J. R., Grishchuk, E. L., and West, R. R. (2002) Chromosome-microtubule interactions during mitosis, Annu. Rev. Cell Dev. Biol., 18, 193–219.

    Article  CAS  PubMed  Google Scholar 

  10. Walker, R. A., O’Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P., and Salmon, E. D. (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J. Cell Biol., 107, 1437–1448.

    Article  CAS  PubMed  Google Scholar 

  11. Akhmanova, A., and Steinmetz, M. O. (2008) Tracking the ends: a dynamic protein network controls the fate of micro-tubule tips, Nat. Rev. Mol. Cell Biol., 9, 309–322.

    Article  CAS  PubMed  Google Scholar 

  12. Akhmanova, A., and Hoogenraad, C. C. (2005) Micro-tubule plus-end-tracking proteins: mechanisms and func-tions, Curr. Opin. Cell Biol., 17, 47–54.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, P., and Wittmann, T. (2012) +TIPs: SxIPping along microtubule ends, Trends Cell Biol., 22, 418–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Bassam, J., and Chang, F. (2011) Regulation of micro-tubule dynamics by TOG-domain proteins XMAP215/ Dis1 and CLASP, Trends Cell Biol., 21, 604–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U., and Howard, J. (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner, Nat. Cell Biol., 8, 957–962.

    Article  CAS  PubMed  Google Scholar 

  16. Gudimchuk, N., Vitre, B., Kim, Y., Kiyatkin, A., Cleveland, D. W., Ataullakhanov, F. I., and Grishchuk, E. L. (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips, Nat. Cell Biol., 15, 1079–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y., and Hancock, W. O. (2015) Kinesin-5 is a micro-tubule polymerase, Nat. Commun., 6, 8160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore, A. T., Rankin, K. E., von Dassow, G., Peris, L., Wagenbach, M., Ovechkina, Y., Andrieux, A., Job, D., and Wordeman, L. (2005) MCAK associates with the tips of polymerizing microtubules, J. Cell Biol., 169, 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lampert, F., Hornung, P., and Westermann, S. (2010) The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex, J. Cell Biol., 189, 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lansbergen, G., and Akhmanova, A. (2006) Microtubule plus end: a hub of cellular activities, Traffic, 7, 499–507.

    Article  CAS  PubMed  Google Scholar 

  21. Van de Willige, D., Hoogenraad, C. C., and Akhmanova, A. (2016) Microtubule plus-end tracking proteins in neuronal development, Cell. Mol. Life Sci., 73, 2053–2077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Su, L. K., and Qi, Y. (2001) Characterization of human MAPRE genes and their proteins, Genomics, 71, 142–149.

    Article  CAS  PubMed  Google Scholar 

  23. De Groot, C. O., Jelesarov, I., Damberger, F. F., Bjelic, S., Scharer, M. A., Bhavesh, N. S., Grigoriev, I., Buey, R. M., Wüthrich, K., Capitani, G., Akhmanova, A., and Steinmetz, M. O. (2010) Molecular insights into mammalian end-binding protein heterodimerization, J. Biol. Chem., 285, 5802–5814.

    Article  PubMed  CAS  Google Scholar 

  24. Komarova, Y., De Groot, C. O., Grigoriev, I., Gouveia, S. M., Munteanu, E. L., Schober, J. M., Honnappa, S., Buey, R. M., Hoogenraad, C. C., Dogterom, M., Borisy, G. G., Steinmetz, M. O., and Akhmanova, A. (2009) Mammalian end binding proteins control persistent microtubule growth, J. Cell Biol., 184, 691–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slep, K. C., and Vale, R. D. (2007) Structural basis of microtubule plus end tracking by XMAP215, CLIP-170 and EB1, Mol. Cell, 27, 976–991.

    Article  CAS  PubMed  Google Scholar 

  26. Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K., and Steinmetz, M. O. (2005) Structural insights into the EB1–APC interaction, EMBO J., 24, 261–269.

    Article  CAS  PubMed  Google Scholar 

  27. Slep, K. C., Rogers, S. L., Elliott, S. L., Ohkura, H., Kolodziej, P. A., and Vale, R. D. (2005) Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end, J. Cell Biol., 168, 587–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A., and Surrey, T. (2012) EBs recognize a nucleotide-dependent structural cap at growing microtubule ends, Cell, 149, 371–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, R., Alushin, G. M., Brown, A., and Nogales, E. (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins, Cell, 162, 849–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayashi, I., and Ikura, M. (2003) Crystal structure of the aminoterminal microtubule-binding domain of end-binding protein 1 (EB1), J. Biol. Chem., 278, 36430–36434.

    Article  CAS  PubMed  Google Scholar 

  31. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J., and Winder, S. J. (2002) Functional plasticity of CH domains, FEBS Lett., 513, 98–106.

    Article  CAS  PubMed  Google Scholar 

  32. Buey, R. M., Mohan, R., Leslie, K., Walzthoeni, T., Missimer, J. H., Menzel, A., Bjelic, S., Bargsten, K., Grigoriev, I., Smal, I., Meijering, E., Aebersold, R., Akhmanova, A., and Steinmetz, M. O. (2011) Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice, Mol. Biol. Cell, 22, 2912–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alberico, E. O., Zhu, Z. C., Wu, Y.-F. O., Gardner, M. K., Kovar, D. R., and Goodson, H. V. (2016) Interactions between the microtubule binding protein EB1 and Factin, J. Mol. Biol., 428, 1304–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dougherty, G. W., Adler, H. J., Rzadzinska, A., Gimona, M., Tomita, Y., Lattig, M. C., Merritt, R. C., and Kachar, B. (2005) CLAMP, a novel microtubule-associated protein with EB-type calponin homology, Cell Motil. Cytoskelet., 62, 141–156.

    Article  CAS  Google Scholar 

  35. Wei, R. R., Al-Bassam, J., and Harrison, S. C. (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment, Nat. Struct. Mol. Biol., 14, 54–59.

    Article  CAS  PubMed  Google Scholar 

  36. Des Georges, A., Katsuki, M., Drummond, D. R., Osei, M., Cross, R. A., and Amos, L. A. (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice, Nat. Struct. Mol. Biol., 15, 1102–1108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Honnappa, S., Gouveia, S. M., Weisbrich, A., Damberger, F. F., Bhavesh, N. S., Jawhari, H., Grigoriev, I., van Rijssel, F. J. A., Buey, R. M., Lawera, A., Jelesarov, I., Winkler, F. K., Wuthrich, K., Akhmanova, A., and Steinmetz, M. O. (2009) An EB1-binding motif acts as a microtubule tip localization signal, Cell, 138, 366–376.

    Article  CAS  PubMed  Google Scholar 

  38. Coy, D. L., Hancock, W. O., Wagenbach, M., and Howard, J. (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain, Nat. Cell Biol., 1, 288–292.

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi, I., Wilde, A., Mal, T. K., and Ikura, M. (2005) Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex, Mol. Cell, 19, 449–460.

    Article  CAS  PubMed  Google Scholar 

  40. Kanaba, T., Maesaki, R., Mori, T., Ito, Y., Hakoshima, T., and Mishima, M. (2013) Microtubule-binding sites of the CH domain of EB1 and its autoinhibition revealed by NMR, Biochim. Biophys. Acta, 1834, 499–507.

    Article  CAS  PubMed  Google Scholar 

  41. Sen, I., Veprintsev, D., Akhmanova, A., and Steinmetz, M. O. (2013) End binding proteins are obligatory dimers, PLoS One, 8, e74448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Skube, S. B., Chaverri, J. M., and Goodson, H. V. (2010) Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo, Cytoskelet. Hoboken NJ, 67, 1–12.

    Article  CAS  Google Scholar 

  43. Jiang, K., Toedt, G., Montenegro Gouveia, S., Davey, N. E., Hua, S., Van der Vaart, B., Grigoriev, I., Larsen, J., Pedersen, L. B., Bezstarosti, K., Lince-Faria, M., Demmers, J., Steinmetz, M. O., Gibson, T. J., and Akhmanova, A. (2012) A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end track-ing proteins, Curr. Biol., 22, 1800–1807.

    Article  CAS  PubMed  Google Scholar 

  44. Ramirez-Rios, S., Denarier, E., Prezel, E., Vinit, A., Stoppin-Mellet, V., Devred, F., Barbier, P., Peyrot, V., Sayas, C. L., Avila, J., Peris, L., Andrieux, A., Serre, L., Fourest-Lieuvin, A., and Arnal, I. (2016) Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism, Mol. Biol. Cell, 27, 2924–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Velot, L., Molina, A., Rodrigues-Ferreira, S., Nehlig, A., Bouchet, B. P., Morel, M., Leconte, L., Serre, L., Arnal, I., Braguer, D., Savina, A., Honore, S., and Nahmias, C. (2015) Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated pro-tein ATIP3, Oncotarget, 6, 43557–43570.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nakamura, M., Zhou, X. Z., and Lu, K. P. (2001) Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization, Curr. Biol., 11, 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  47. Green, R. A., Wollman, R., and Kaplan, K. B. (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment, Mol. Biol. Cell, 16, 4609–4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stypula-Cyrus, Y., Mutyal, N. N., Cruz, M. A. D., Kunte, D. P., Radosevich, A. J., Wali, R., Roy, H. K., and Backman, V. (2014) End-binding protein 1 (EB1) up-regulation is an early event in colorectal carcinogenesis, FEBS Lett., 588, 829–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J. S., Chen, M., Wallar, B. J., Alberts, A. S., and Gundersen, G. G. (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nat. Cell Biol., 6, 820–830.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, J., Ahmad, S., and Mao, Y. (2007) BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment, J. Cell Biol., 178, 773–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenberg, M. M., Yang, F., Mohn, J. L., Storer, E. K., and Jacob, M. H. (2010) The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo, J. Neurosci., 30, 11073–11085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, Y., Tian, X., Kim, W.-Y., and Snider, W. D. (2011) Adenomatous polyposis coli regulates axon arborization and cytoskeleton organization via its N-terminus, PLoS One, 6, e24335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Votin, V., Nelson, W. J., and Barth, A. I. M. (2005) Neurite outgrowth involves adenomatous polyposis coli protein and ß-catenin, J. Cell Sci., 118, 5699–5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eom, T.-Y., Stanco, A., Guo, J., Wilkins, G., Deslauriers, D., Yan, J., Monckton, C., Blair, J., Oon, E., Perez, A., Salas, E., Oh, A., Ghukasyan, V., Snider, W. D., Rubenstein, J. L. R., and Anton, E. S. (2014) Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration, Dev. Cell, 31, 677–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Purro, S. A., Ciani, L., Hoyos-Flight, M., Stamatakou, E., Siomou, E., and Salinas, P. C. (2008) Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli, J. Neurosci., 28, 8644–8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koester, M. P., Muller, O., and Pollerberg, G. E. (2007) Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering, J. Neurosci., 27, 12590–12600.

    Article  CAS  PubMed  Google Scholar 

  57. Shi, S.-H., Cheng, T., Jan, L. Y., and Jan, Y.-N. (2004) APC and GSK-3ß are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity, Curr. Biol., 14, 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  58. Vaughan, P. S., Miura, P., Henderson, M., Byrne, B., and Vaughan, K. T. (2002) A role for regulated binding of p150Glued to microtubule plus ends in organelle transport, J. Cell Biol., 158, 305–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., Howard, J., and Hyman, A. A. (2008) XMAP215 is a processive microtubule polymerase, Cell, 132, 79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zanic, M., Widlund, P. O., Hyman, A. A., and Howard, J. (2013) Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels, Nat. Cell Biol., 15, 688–693.

    Article  CAS  PubMed  Google Scholar 

  61. Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., Cooke, M. P., Walker, J. R., and Hogenesch, J. B. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes, Proc. Natl. Acad. Sci. USA, 101, 6062–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tirnauer, J. S., O’Toole, E., Berrueta, L., Bierer, B. E., and Pellman, D. (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules, J. Cell Biol., 145, 993–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwartz, K., Richards, K., and Botstein, D. (1997) BIM1 encodes a microtubule-binding protein in yeast, Mol. Biol. Cell, 8, 2677–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beinhauer, J. D., Hagan, I. M., Hegemann, J. H., and Fleig, U. (1997) Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form, J. Cell Biol., 139, 717–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asakawa, K., Toya, M., Sato, M., Kanai, M., Kume, K., Goshima, T., Garcia, M. A., Hirata, D., and Toda, T. (2005) Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment, EMBO Rep., 6, 1194–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berrueta, L., Kraeft, S.-K., Tirnauer, J. S., Schuyler, S. C., Chen, L. B., Hill, D. E., Pellman, D., and Bierer, B. E. (1998) The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle micro-tubules, Proc. Natl. Acad. Sci. USA, 95, 10596–10601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F., and Meredith, D. M. (1998) EB1, a pro-tein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle, Oncogene, 17, 3471–3477.

    Article  CAS  PubMed  Google Scholar 

  68. Piehl, M., Tulu, U. S., Wadsworth, P., and Cassimeris, L. (2004) Centrosome maturation: measurement of micro-tubule nucleation throughout the cell cycle by using GFP-tagged EB1, Proc. Natl. Acad. Sci. USA, 101, 1584–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheeseman, I. M., and Desai, A. (2008) Molecular architecture of the kinetochore–microtubule interface, Nat. Rev. Mol. Cell Biol., 9, 33–46.

    Article  CAS  PubMed  Google Scholar 

  70. Bruning-Richardson, A., Langford, K. J., Ruane, P., Lee, T., Askham, J. M., and Morrison, E. E. (2011) EB1 is required for spindle symmetry in mammalian mitosis, PLoS One,6.

  71. Lomakin, A. J., Semenova, I., Zaliapin, I., Kraikivski, P., Nadezhdina, E., Slepchenko, B. M., Akhmanova, A., and Rodionov, V. (2009) CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport, Dev. Cell, 17, 323–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morrison, E. E., Moncur, P. M., and Askham, J. M. (2002) EB1 identifies sites of microtubule polymerization during neurite development, Brain Res. Mol. Brain Res., 98, 145–152.

    Article  CAS  PubMed  Google Scholar 

  73. Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., Camera, P., Spangler, S. A., Stefano, P. D., Demmers, J., Krugers, H., Defilippi, P., Akhmanova, A., and Hoogenraad, C. C. (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity, Neuron, 61, 85–100.

    Article  CAS  PubMed  Google Scholar 

  74. Alves-Silva, J., Sanchez-Soriano, N., Beaven, R., Klein, M., Parkin, J., Millard, T. H., Bellen, H. J., Venken, K. J. T., Ballestrem, C., Kammerer, R. A., and Prokop, A. (2012) Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip inter-acting proteins), J. Neurosci., 32, 9143–9158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arens, J., Duong, T.-T., and Dehmelt, L. (2013) A morphometric screen identifies specific roles for microtubule-regulating genes in neuronal development of P19 stem cells, PLoS One,8.

  76. Akhmanova, A., and Steinmetz, M. O. (2015) Control of microtubule organization and dynamics: two ends in the limelight, Nat. Rev. Mol. Cell Biol., 16, 711–726.

    Article  CAS  PubMed  Google Scholar 

  77. Vitre, B., Coquelle, F. M., Heichette, C., Garnier, C., Chretien, D., and Arnal, I. (2008) EB1 regulates micro-tubule dynamics and tubulin sheet closure in vitro, Nat. Cell Biol., 10, 415–421.

    Article  CAS  PubMed  Google Scholar 

  78. Bieling, P., Laan, L., Schek, H., Munteanu, E. L., Sandblad, L., Dogterom, M., Brunner, D., and Surrey, T. (2007) Reconstitution of a microtubule plus-end tracking system in vitro, Nature, 450, 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  79. Maurer, S. P., Cade, N. I., Bohner, G., Gustafsson, N., Boutant, E., and Surrey, T. (2014) EB1 accelerates two conformational transitions important for microtubule maturation and dynamics, Curr. Biol., 24, 372–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohan, R., Katrukha, E. A., Doodhi, H., Smal, I., Meijering, E., Kapitein, L. C., Steinmetz, M. O., and Akhmanova, A. (2013) End-binding proteins sensitize microtubules to the action of microtubule-targeting agents, Proc. Natl. Acad. Sci. USA, 110, 8900–8905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Doodhi, H., Prota, A. E., Rodriguez-Garcia, R., Xiao, H., Custar, D. W., Bargsten, K., Katrukha, E. A., Hilbert, M., Hua, S., Jiang, K., Grigoriev, I., Yang, C.-P. H., Cox, D., Horwitz, S. B., Kapitein, L. C., Akhmanova, A., and Steinmetz, M. O. (2016) Termination of protofilament elongation by eribulin induces lattice defects that promote microtubule catastrophes, Curr. Biol., 26, 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  82. Moriwaki, T., and Goshima, G. (2016) Five factors can reconstitute all three phases of microtubule polymerization dynamics, J. Cell Biol., 215, 357–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Srayko, M., Kaya, A., Stamford, J., and Hyman, A. A. (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo, Dev. Cell, 9, 223–236.

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura, S., Grigoriev, I., Nogi, T., Hamaji, T., Cassimeris, L., and Mimori-Kiyosue, Y. (2012) Dissecting the nanoscale distributions and functions of microtubule-end-binding proteins EB1 and ch-TOG in interphase HeLa cells, PLoS One,7.

  85. Maurer, S. P., Cade, N. I., Bohner, G., Gustafsson, N., Boutant, E., and Surrey, T. (2014) EB1 accelerates two conformational transitions important for microtubule maturation and dynamics, Curr. Biol., 24, 372–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Matsuo, Y., Maurer, S. P., Yukawa, M., Zakian, S., Singleton, M. R., Surrey, T., and Toda, T. (2016) An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation, J. Cell Sci., 129, 4592–4606.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bieling, P., Kandels-Lewis, S., Telley, I. A., Van Dijk, J., Janke, C., and Surrey, T. (2008) CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites, J. Cell Biol., 183, 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dixit, R., Barnett, B., Lazarus, J. E., Tokito, M., Goldman, Y. E., and Holzbaur, E. L. F. (2009) Microtubule plus-end tracking by CLIP-170 requires EB1, Proc. Natl. Acad. Sci. USA, 106, 492–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mandelkow, E. M., Mandelkow, E., and Milligan, R. A. (1991) Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study, J. Cell Biol., 114, 977–991.

    Article  CAS  PubMed  Google Scholar 

  90. Tran, P. T., Joshi, P., and Salmon, E. D. (1997) How tubulin subunits are lost from the shortening ends of micro-tubules, J. Struct. Biol., 118, 107–118.

    Article  CAS  PubMed  Google Scholar 

  91. Muller-Reichert, T., Chretien, D., Severin, F., and Hyman, A. A. (1998) Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate, Proc. Natl. Acad. Sci. USA, 95, 3661–3666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zovko, S., Abrahams, J. P., Koster, A. J., Galjart, N., and Mommaas, A. M. (2008) Microtubule plus-end conformations and dynamics in the periphery of interphase mouse fibroblasts, Mol. Biol. Cell, 19, 3138–3146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chretien, D., Fuller, S. D., and Karsenti, E. (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates, J. Cell Biol., 129, 1311–1328.

    Article  CAS  PubMed  Google Scholar 

  94. Guesdon, A., Bazile, F., Buey, R. M., Mohan, R., Monier, S., Garcia, R. R., Angevin, M., Heichette, C., Wieneke, R., Tampe, R., Duchesne, L., Akhmanova, A., Steinmetz, M. O., and Chretien, D. (2016) EB1 interacts with out-wardly curved and straight regions of the microtubule lattice, Nat. Cell Biol., 18, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  95. Hoog, J. L., Huisman, S. M., Sebo-Lemke, Z., Sandblad, L., McIntosh, J. R., Antony, C., and Brunner, D. (2011) Electron tomography reveals a flared morphology on growing microtubule ends, J. Cell Sci., 124, 693–698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Carlier, M. F., and Pantaloni, D. (1981) Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization, Biochemistry, 20, 1918–1924.

    Article  CAS  PubMed  Google Scholar 

  97. Walker, R. A., Inoue, S., and Salmon, E. D. (1989) Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual micro-tubules in vitro, J. Cell Biol., 108, 931–937.

    Article  CAS  PubMed  Google Scholar 

  98. Tran, P. T., Walker, R. A., and Salmon, E. D. (1997) A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends, J. Cell Biol., 138, 105–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J. (1992) Role of GTP hydrolysis in micro-tubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell, 3, 1155–1167.

    Article  CAS  PubMed  Google Scholar 

  100. O’Brien, E. T., Voter, W. A., and Erickson, H. P. (1987) GTP hydrolysis during microtubule assembly, Biochemistry, 26, 4148–4156.

    Article  PubMed  Google Scholar 

  101. Stewart, R. J., Farrell, K. W., and Wilson, L. (1990) Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism, Biochemistry, 29, 6489–6498.

    Article  CAS  PubMed  Google Scholar 

  102. Caplow, M., and Shanks, J. (1996) Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules, Mol. Biol. Cell, 7, 663–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Drechsel, D. N., and Kirschner, M. W. (1994) The minimum GTP cap required to stabilize microtubules, Curr. Biol., 4, 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  104. Zanic, M., Stear, J. H., Hyman, A. A., and Howard, J. (2009) EB1 recognizes the nucleotide state of tubulin in the microtubule lattice, PLoS One,4.

  105. Maurer, S. P., Bieling, P., Cope, J., Hoenger, A., and Surrey, T. (2011) GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proc. Natl. Acad. Sci. USA, 108, 3988–3993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bechstedt, S., Lu, K., and Brouhard, G. J. (2014) Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice, Curr. Biol., 24, 2366–2375.

    Article  CAS  PubMed  Google Scholar 

  107. Caplow, M., and Fee, L. (2003) Concerning the chemical nature of tubulin subunits that cap and stabilize micro-tubules, Biochemistry, 42, 2122–2126.

    Article  CAS  PubMed  Google Scholar 

  108. Duellberg, C., Cade, N. I., Holmes, D., and Surrey, T. (2016) The size of the EB cap determines instantaneous microtubule stability, eLife,5.

  109. Gardner, M. K., Charlebois, B. D., Janosi, I. M., Howard, J., Hunt, A. J., and Odde, D. J. (2011) Rapid microtubule self-assembly kinetics, Cell, 146, 582–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brouhard, G. J. (2015) Dynamic instability 30 years later: complexities in microtubule growth and catastrophe, Mol. Biol. Cell, 26, 1207–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C., Severin, F., Galjart, N., Grosveld, F., Vorobjev, I., Tsukita, S., and Akhmanova, A. (2005) CLASP1 and CLASP2 bind to EB1 and regulate micro-tubule plus-end dynamics at the cell cortex, J. Cell Biol., 168, 141–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bjelic, S., De Groot, C. O., Scharer, M. A., Jaussi, R., Bargsten, K., Salzmann, M., Frey, D., Capitani, G., Kammerer, R. A., and Steinmetz, M. O. (2012) Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150(glued), J. Struct. Biol., 177, 160–167.

    Article  CAS  PubMed  Google Scholar 

  113. Tortosa, E., Galjart, N., Avila, J., and Sayas, C. L. (2013) MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells, EMBO J., 32, 1293–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Gudimchuk.

Additional information

Original Russian Text © V. V. Mustyatsa, A. V. Boyakhchyan, F. I. Ataullakhanov, N. B. Gudimchuk, 2017, published in Biokhimiya, 2017, Vol. 82, No. 7, pp. 1033–1046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustyatsa, V.V., Boyakhchyan, A.V., Ataullakhanov, F.I. et al. EB-family proteins: Functions and microtubule interaction mechanisms. Biochemistry Moscow 82, 791–802 (2017). https://doi.org/10.1134/S0006297917070045

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917070045

Keywords

Navigation