Skip to main content
Log in

DNA import into mitochondria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

HGT:

horizontal gene transfer

MPT:

mitochondrial permeability transition

MPTP:

mitochondrial permeability transition pore

mtDNA:

mitochondrial DNA

OXPHOS:

oxidative phosphorylation

PBR/TSPO:

peripheral benzodiazepine receptor/ translocator protein

plDNA:

plasmid-like DNA

VDAC:

voltage-dependent anion channel or mitochondrial porin

References

  1. Turmel, M., Otis, C., and Lemieux, C. (2002) The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants, Mol. Biol. Evol., 19, 24–38.

    Article  CAS  PubMed  Google Scholar 

  2. Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., and Mikami, T. (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNAcys (GCA), Nucleic Acids Res., 28, 2571–2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marienfeld, J., Unseld, M., and Brennicke, A. (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information, Trends Plant Sci., 4, 495–502.

    Article  PubMed  Google Scholar 

  4. Unseld, M., Marienfeld, J. R., Brandt, P., and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides, Nat. Genet., 15, 57–61.

    Article  CAS  PubMed  Google Scholar 

  5. Brennicke, A., and Blanz, P. (1982) Circular mitochondrial DNA species from Oenothera with unique sequence, Mol. Gen. Genet., 187, 461–467.

    Article  CAS  Google Scholar 

  6. Brown, G. G., and Zhang, M. (1995) Mitochondrial plasmids: DNA and RNA, in The Molecular Biology of Plant Mitochondria (Levings, C. S., III, and Vasil, I. K., eds.) Kluwer, Netherlands, pp. 61–91.

    Chapter  Google Scholar 

  7. Fukuhara, T., Moriyama, H., and Nitta, T. (1995) The unusual structure of a novel RNA replicon in rice, J. Biol. Chem., 270, 18147–18149.

    Article  CAS  PubMed  Google Scholar 

  8. Kanazawa, A., Tsutsumi, N., and Hirai, A. (1998) Differential changes in copy number of rice mitochondrial plasmid-like DNAs and main mitochondrial genomic DNAs that depend on temperature, Curr. Genet., 33, 437–444.

    Article  CAS  PubMed  Google Scholar 

  9. Leaver, G., and Gray, M. (1982) Mitochondrial genome organization and expression in higher plants, Annu. Rev. Plant Physiol., 33, 390–395.

    Article  Google Scholar 

  10. Lonsdale, D. M., and Grienenberger, J.-M. (1992) The mitochondrial genome of plants, in Plant Gene Research. Cell Organelles (Herrmann, R. G., ed.) Springer-Verlag, Austria, pp. 181–218.

    Google Scholar 

  11. Leon, P., O’Brien-Vedder, C., and Walbot, V. (1992) Expression of ORF1 of the linear 2.3 kb plasmid of maize mitochondria: product localization and similarities to the 130 kDa protein encoded by the S2 episome, Curr. Genet., 22, 61–67.

    Article  CAS  PubMed  Google Scholar 

  12. Leon, P., Walbot, V., and Bedinger, P. (1989) Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes, Nucleic Acids Res., 17, 4089–4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saumitou-Laprade, P., Pannebecker, G., Maggouta, F., Jean, R., and Michaelis, G. (1989) A linear 10.4 kb plasmid in the mitochondria of Beta maritima, Curr. Genet., 16, 181–186.

    Article  CAS  Google Scholar 

  14. Clifton, S. W., Minx, P., Fauron, C. M.-R., Gibson, M., Allen, J. O., Sun, H., Thompson, M., Barbazuk, W. B., Kanuganti, S., Tayloe, C., Meyer, L., Wilson, R. K., and Newton, K. J. (2004) Sequence and comparative analysis of the maize NBmitochondrial genome, Plant Physiol., 136, 3486–3503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kleine, T., Maier, U. W., and Leister, D. (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis, Annu. Rev. Plant Biol., 60, 115–138.

    Article  CAS  PubMed  Google Scholar 

  16. Davis, C. C., Anderson, W. R., and Wurdack, K. J. (2005) Gene transfer from a parasitic flowering plant to a fern, Proc. R Soc. B Biol. Sci., 272, 2237–2242.

    Article  CAS  Google Scholar 

  17. Bergthorsson, U., Adams, K. L., Thomason, B., and Palmer, J. D. (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants, Nature, 424, 197–201.

    Article  CAS  PubMed  Google Scholar 

  18. Won, H., and Renner, S. S. (2003) Horizontal gene transfer from flowering plants to Gnetum, Proc. Natl. Acad. Sci. USA, 100, 10824–10829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marienfeld, J. R., Unseld, M., Brandt, P., and Brennicke, A. (1997) Viral nucleic acid sequence transfer between fungi and plants, Trends Genet., 13, 260–261.

    Article  CAS  PubMed  Google Scholar 

  20. Marechal-Drouard, L., Weil, J.-H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 13–32.

    Article  CAS  Google Scholar 

  21. Suyama, Y. (1967) The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis, Biochemistry, 6, 2829–2839.

    Article  CAS  PubMed  Google Scholar 

  22. Alfonzo, J. D., and Soll, D. (2009) Mitochondrial tRNA import–the challenge to understand has just begun, Biol. Chem., 390, 717–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salinas, T., Duchene, A. M., Delage, L., Nilsson, S., Glaser, E., Zaepfel, M., and Marechal-Drouard, L. (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria, Proc. Natl. Acad. Sci. USA, 103, 18362–18367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider, A. (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation, Annu. Rev. Biochem., 80, 1033–1053.

    Article  CAS  PubMed  Google Scholar 

  25. Smirnov, A., Entelis, N., Martin, R. P., and Tarassov, I. (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18, Genes Dev., 25, 1289–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, G., Chen, H. W., Oktay, Y., Zhang, J., Allen, E. L., Smith, G. M., Fan, K. C., Hong, J. S., French, S. W., McCaffery, J. M., Lightowlers, R. N., Morse, H. C., Koehler, C. M., and Teitell, M. A. (2010) PNPASE regulates RNA import into mitochondria, Cell, 142, 456–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dietrich, A., Wallet, C., Iqbal, R. K., Gualberto, J. M., and Lotfi, F. (2015) Organellar non-coding RNAs: emerging regulation mechanisms, Biochimie, 117, 48–62.

    Article  CAS  PubMed  Google Scholar 

  28. Kolesnikova, O. A., Entelis, N. S., Jacquin-Becker, C., Goltzene, F., Chrzanowska-Lightowlers, Z. M., Lightowlers, R. N., Martin, R. P., and Tarassov, I. (2004) Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells, Human Mol. Genet., 13, 2519–2534.

    Article  CAS  Google Scholar 

  29. Tarassov, I., Entelis, N., and Martin, R. P. (1995) An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA, J. Mol. Biol., 245, 315–323.

    Article  CAS  PubMed  Google Scholar 

  30. Delage, L., Dietrich, A., Cosset, A., and MarechalDrouard, L. (2003) In vitro import of a nuclearly encoded tRNA into mitochondria of Solanum tuberosum, Mol. Cell. Biol., 23, 4000–4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, G., Shimada, E., Zhang, J., Hong, J. S., Smith, G. M., Teitell, M. A., and Koehler, C. M. (2012) Correcting human mitochondrial mutations with targeted RNA import, Proc. Natl. Acad. Sci. USA, 109, 4840–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konstantinov, Yu. M., Podsosonny, V. A., and Lutsenko, G. N. (1988) Synthesis of bacterial vector plasmid pBR322 DNA in isolated maize mitochondria, Dokl. AN SSSR, 298, 502–504.

    CAS  Google Scholar 

  33. Konstantinov, Yu. M., Podsosonny, V. A., Lutsenko, G. N., and Rivkin, M. I. (1989) Translocation of bacterial vector plasmids into intact corn shoot mitochondria, Biochemistry (Moscow), 54, 154–158.

    CAS  Google Scholar 

  34. Konstantinov, Y. M., Podsosonny, V. A., and Lutsenko, G. N. (1990) Translocation of bacterial vector plasmids into intact mitochondria of seedlings, Maize Genet. Cooper. Newslett., 64, 67–68.

    Google Scholar 

  35. Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2003) Plant mitochondria actively import DNA via the permeability transition pore complex, EMBO J., 22, 1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ibrahim, N., Handa, H., Cosset, A., Koulintchenko, M., Konstantinov, Y., Lightowlers, R. N., Dietrich, A., and Weber-Lotfi, F. (2011) DNA delivery to mitochondria: sequence specificity and energy enhancement, Pharm. Res., 28, 2871–2882.

    Article  CAS  PubMed  Google Scholar 

  37. Klimenko, E. S., Mileyko, V. A., Morozkin, E. S., Laktionov, P. P., and Konstantinov, Yu. M. (2011) Characteristics of DNA export and import into potato (Solanum tuberosum) mitochondria by using qualitative PCR, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 28, 199–205.

    CAS  Google Scholar 

  38. Mileshina, D., Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2011) Transfection of plant mitochondria and in organello gene integration, Nucleic Acids Res., 39, e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koulintchenko, M., Temperley, R. J., Mason, P. A., Dietrich, A., and Lightowlers, R. N. (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Human Mol. Genet., 15, 143–154.

    Article  CAS  Google Scholar 

  40. Weber-Lotfi, F., Ibrahim, N., Boesch, P., Cosset, A., Konstantinov, Y., Lightowlers, R. N., and Dietrich, A. (2009) Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import, Biochim. Biophys. Acta, 1787, 320–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boesch, P., Ibrahim, N., Paulus, F., Cosset, A., Tarasenko, V., and Dietrich, A. (2009) Plant mitochondria possess a short-patch base excision DNA repair pathway, Nucleic Acids Res., 37, 5690–5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boesch, P., Ibrahim, N., Dietrich, A., and Lightowlers, R. N. (2010) Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria, Nucleic Acids Res., 38, 1478–1488.

    Article  CAS  PubMed  Google Scholar 

  43. Goremykin, V. V., Salamimi, F., Velasco, R., and Viola, R. (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer, Mol. Biol. Evol., 26, 99–110.

    Article  CAS  PubMed  Google Scholar 

  44. Alverson, A. J., Rice, D. W., Dickinson, S., Barry, K., and Palmer, J. D. (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber, Plant Cell, 23, 2499–2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Handa, H., Itani, K., and Sato, H. (2002) Structural features and expression analysis of a linear mitochondrial plasmid in rapeseed (Brassica napus L.), Mol. Genet. Genom., 267, 797–805.

    Article  CAS  Google Scholar 

  46. Bandiera, S., Mategot, R., Girard, M., Demongeot, J., and Henrion-Caude, A. (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria, Free Radic. Biol. Med., 64, 12–19.

    Article  CAS  PubMed  Google Scholar 

  47. Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., and Arbel, N. (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death, Mol. Aspects Med., 31, 227–285.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, Y., and Tateda, C. (2013) The functions of voltage-dependent anion channels in plants, Apoptosis, 18, 917–924.

    Article  CAS  PubMed  Google Scholar 

  49. Dudek, J., Rehling, P., and Van der Laan, M. (2013) Mitochondrial protein import: common principles and physiological networks, Biochim. Biophys. Acta, 1833, 274–285.

    Article  CAS  PubMed  Google Scholar 

  50. Murcha, M. W., Wang, Y., Narsai, R., and Whelan, J. (2014) The plant mitochondrial protein import apparatus–the differences make it interesting, Biochim. Biophys. Acta, 1840, 1233–1245.

    Article  CAS  PubMed  Google Scholar 

  51. Haferkamp, I., and Schmitz-Esser, S. (2012) The plant mitochondrial carrier family: functional and evolutionary aspects, Front. Plant Sci., 3, doi: 10.3389/fpls.2012.00002.

    Google Scholar 

  52. Palmieri, F., Pierri, C. L., De Grassi, A., Nunes-Nesi, A., and Fernie, A. R. (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights, Plant J., 66, 161–181.

    Article  CAS  PubMed  Google Scholar 

  53. Pusnik, M., Charriere, F., Maser, P., Waller, R. F., Dagley, M. J., Lithgow, T., and Schneider, A. (2009) The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane, Mol. Biol. Evol., 26, 671–680.

    Article  CAS  PubMed  Google Scholar 

  54. Mannella, C. A., Forte, M., and Colombini, M. (1992) Toward the molecular structure of the mitochondrial channel, VDAC, J. Bioenerg. Biomembr., 24, 7–19.

    Article  CAS  PubMed  Google Scholar 

  55. Weber-Lotfi, F., Koulintchenko, M. V., Ibrahim, N., Hammann, P., Mileshina, D. V., Konstantinov, Y. M., and Dietrich, A. (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways, Biochim. Biophys. Acta, 1853, 3165–3181.

    Article  CAS  PubMed  Google Scholar 

  56. Burri, L., Vascotto, K., Gentle, I. E., Chan, N. C., Beilharz, T., Stapleton, D. I., Ramage, L., and Lithgow, T. (2006) Integral membrane proteins in the mitochondrial outer membrane of Saccharomyces cerevisiae, FEBS J., 273, 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  57. Lauffer, S., Mabert, K., Czupalla, C., Pursche, T., Hoflack, B., Rodel, G., and Krause-Buchholz, U. (2012) Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p, J. Biol. Chem., 287, 17447–17458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Von Stedingk, E., Pavlov, P. F., Grinkevich, V. A., and Glaser, E. (1999) The precursor of the F1beta subunit of the ATP synthase is covalently modified upon binding to plant mitochondrial, Plant Mol. Biol., 41, 505–515.

    Article  Google Scholar 

  59. Salinas, T., Duchene, A. M., and Marechal-Drouard, L. (2008) Recent advances in tRNA mitochondrial import, Trends Biochem. Sci., 33, 320–329.

    Article  CAS  PubMed  Google Scholar 

  60. Adhya, S. (2008) Leishmania mitochondrial tRNA importers, Int. J. Cell Biochem. Cell Biol., 40, 2681–2685.

    Article  CAS  Google Scholar 

  61. Rubio, M. A., and Hopper, A. K. (2011) Transfer RNA travels from the cytoplasm to organelles, Wiley Interdiscip. Rev. RNA, 2, 802–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schekman, R. (2010) Editorial expression of concern: a bifunctional tRNA import receptor from Leishmania mitochondria, Proc. Natl. Acad. Sci. USA, 107, 9476.

    Article  PubMed Central  CAS  Google Scholar 

  63. Niazi, A. K., Mileshina, D., Cosset, A., Val, R., WeberLotfi, F., and Dietrich, A. (2013) Targeting nucleic acids into mitochondria: progress and prospects, Mitochondrion, 13, 548–558.

    Article  CAS  PubMed  Google Scholar 

  64. Brustovetsky, N., and Klingenberg, M. (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+, Biochemistry, 35, 8483–8488.

    Article  CAS  PubMed  Google Scholar 

  65. Brustovetsky, N., Tropschug, M., Heimpel, S., Heidkamper, D., and Klingenberg, M. (2002) A large Ca2+dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore, Biochemistry, 41, 11804–11811.

    Article  CAS  PubMed  Google Scholar 

  66. Zamzami, N., and Kroemer, G. (2001) The mitochondrion in apoptosis: how Pandora’s box opens, Nat. Rev. Mol. Cell Biol., 2, 67–71.

    Article  CAS  PubMed  Google Scholar 

  67. Vianello, A., Casolo, V., Petrussa, E., Peresson, C., Patui, S., Bertolini, A., Passamonti, S., Braidot, E., and Zancani, M. (2012) The mitochondrial permeability transition pore (PTP)–an example of multiple molecular exaptation? Biochim. Biophys. Acta, 1817, 2072–2086.

    Article  CAS  PubMed  Google Scholar 

  68. Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R., and Wallace, D. C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bernardi, P., and Di Lisa, F. (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection, J. Mol. Cell. Cardiol., 78, 100–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Halestrap, A. P., and Richardson, A. P. (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischemia/reperfusion injury, J. Mol. Cell. Cardiol., 78, 129–141.

    Article  CAS  PubMed  Google Scholar 

  71. Pebay-Peyroula, E., Dahout-Gonzalez, C., Kahn, R., Trezeguet, V., Lauquin, G. J., and Brandolin, G. (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside, Nature, 426, 39–44.

    Article  CAS  PubMed  Google Scholar 

  72. Morciano, G., Giorgi, C., Bonora, M., Punzetti, S., Pavasini, R., Wieckowski, M. R., Campo, G., and Pinton, P. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 78, 142–153.

    Article  CAS  PubMed  Google Scholar 

  73. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephroand neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.

    Article  CAS  Google Scholar 

  74. Chen, C., Ko, Y., Delannoy, M., Ludtke, S. J., Chiu, W., and Pedersen, P. L. (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP, J. Biol. Chem., 279, 31761–31768.

    Article  CAS  PubMed  Google Scholar 

  75. Detke, S., and Elsabrouty, R. (2008) Identification of a mitochondrial ATP synthase–adenine nucleotide translocator complex in Leishmania, Acta Trop., 105, 16–20.

    Article  CAS  PubMed  Google Scholar 

  76. Clemencon, B. (2012) Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP, Int. J. Mol. Sci., 13, 1858–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Messerschmitt, M., Jakobs, S., Vogel, F., Fritz, S., Dimmer, K. S., Neupert, W., and Westermann, B. (2003) The inner membrane protein Mdm33 controls mitochondrial morphology in yeast, J. Cell Biol., 160, 553–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Westermann, B. (2008) Molecular machinery of mitochondrial fusion and fission, J. Biol. Chem., 283, 13501–13505.

    Article  CAS  PubMed  Google Scholar 

  79. Van der Bliek, A. M., Shen, Q., and Kawajiri, S. (2013) Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol., pii: a011072.

    Google Scholar 

  80. Zhang, Y., and Chan, D. C. (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1, Proc. Natl. Acad. Sci. USA, 104, 18526–18530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gutierrez-Aguilar, M., and Uribe-Carvajal, S. (2015) The mitochondrial unselective channel in Saccharomyces cerevisiae, Mitochondrion, 22, 85–90.

    Article  CAS  PubMed  Google Scholar 

  82. Panov, A., Filippova, S., and Lyakhovich, V. (1980) Adenine nucleotide translocase as a site of regulation by ADP of the rat liver mitochondria permeability to H+ and K+ ions, Arch. Biochem. Biophys., 199, 420–426.

    Article  CAS  PubMed  Google Scholar 

  83. Cabezon, E., and De la Cruz, F. (2006) TrwB: an F(1)ATPase-like molecular motor involved in DNA transport during bacterial conjugation, Res. Microbiol., 157, 299–305.

    Article  CAS  PubMed  Google Scholar 

  84. Tato, I., Matilla, I., Arechaga, I., Zunzunegui, S., De la Cruz, F., and Cabezon, E. (2007) The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors, J. Biol. Chem., 282, 25569–25576.

    Article  CAS  PubMed  Google Scholar 

  85. Szabo, I., and Zoratti, M. (2014) Mitochondrial channels: ion fluxes and more, Physiol. Rev., 94, 519–608.

    Article  CAS  PubMed  Google Scholar 

  86. Entelis, N. S., Kolesnikova, O. A., Dogan, S., Martin, R. P., and Tarassov, I. A. (2001) 5S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements, J. Biol. Chem., 276, 45642–45653.

    Article  CAS  PubMed  Google Scholar 

  87. Maxfield, F. R., and Wustner, D. (2002) Intracellular cholesterol transport, J. Clin. Invest., 110, 891–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flis, V. V., and Daum, G. (2013) Lipid transport between the endoplasmic reticulum and mitochondria, in The Endoplasmic Reticulum. A Subject Collection from Cold Spring Harbor Perspectives in Biology (Ferro-Novick, S., Rapoport, T. A., and Schekman, R., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, pp. 109–130.

    Google Scholar 

  89. McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and adenine nucleotide carrier, Proc. Natl. Acad. Sci. USA, 89, 3170–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zorov, D. B. (1996) Mitochondrial transport of nucleic acids. Involvement of the benzodiazepine receptor, Biochemistry (Moscow), 61, 939–946.

    Google Scholar 

  91. Mower, J. P., Stefanovic, S., Hao, W., Gammow, J. S., Jain, K., Ahmed, D., and Palmer, J. D. (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial gene, BMC Biol., 8, 150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanchez-Puerta, M. V., Cho, Y., Mower, J. P., Alverson, A. J., and Palmer, J. P. (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group intron in flowering plant mitochondria, Mol. Biol. Evol., 25, 1762–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burger, G., Gray, M. W., and Lang, B. F. (2003) Mitochondrial genomes: anything goes, Trends Genet., 19, 709–716.

    Article  CAS  PubMed  Google Scholar 

  94. Cho, Y., Qiu, Y. L., Kuhlman, P., and Palmer, J. D. (1998) Explosive invasion of plant mitochondria by a group I intron, Proc. Natl. Acad. Sci. USA, 95, 14244–14249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R., and Palmer, J. D. (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella, Proc. Natl. Acad. Sci. USA, 101, 17747–17752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Renner, S., and Bellot, S. (2012) Horizontal gene transfer in eukaryotes: fungi-to-plant and plant-to-plant transfers of organellar DNA, in Genomics of Chloroplast and Mitochondria (Bock, R., and Knoop, V., eds.) Springer, Dordrecht, The Netherlands, pp. 223–235.

    Chapter  Google Scholar 

  97. Hao, W., Richardson, A. O., Zheng, Y., and Palmer, J. D. (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion, Proc. Natl. Acad. Sci. USA, 107, 21576–21581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bock, R. (2010) The give-and-take of DNA: horizontal gene transfer in plants, Trends Plant Sci., 15, 11–22.

    Article  CAS  PubMed  Google Scholar 

  99. Richardson, A. O., and Plamer, J. D. (2007) Horizontal gene transfer in plants, J. Exp. Bot., 58, 1–9.

    Article  CAS  PubMed  Google Scholar 

  100. Bryzgunova, O. E., and Laktionov, P. P. (2015) Development of circulating DNA pool in the blood: source, features of composition and circulation, Biochemistry (Moscow) Suppl. Ser. B Biomed. Chem., 61, 409–426.

    CAS  Google Scholar 

  101. Gahan, P. B. (2012) Biology of circulating nucleic acids and possible roles in diagnosis and treatment in diabetes and cancer, Infect. Disord. Drug Targets, 12, 360–370.

    Article  CAS  PubMed  Google Scholar 

  102. Gahan, P. B., and Swaminathan, R. (2008) Circulating nucleic acids in plasma and serum, Ann. N. Y. Acad. Sci., 1137, 1–6.

    Article  CAS  PubMed  Google Scholar 

  103. Gahan, P. (2013) Circulating nucleic acids: possible inherited effects, Biol. J. Linn. Soc., 110, 931–948.

    Article  Google Scholar 

  104. Wang, L., Xie, L., Zhang, Q., Cai, X., Tang, Y., Wang, L., Hang, T., Liu, J., and Gong, J. (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients, Coron. Artery Dis., 26, 296–300.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bliksoen, M., Mariero, L. H., Ohm, I. K., Haugen, F., Yndestad, A., Solheim, S., Seljeflot, I., Ranheim, T., Andersen, G. O., Aukrust, P., Valen, G., and Vinge, L. E. (2012) Increased circulating mitochondrial DNA after myocardial infarction, Int. J. Cardiol., 158, 132–134.

    Article  PubMed  Google Scholar 

  106. Sudakov, N. P., Popkova, T. P., Novikova, M. A., Katyshev, A. V., Nikiforov, S. B., Pushkarev, B. G., Goldberg, O. A., Klimenkov, I. V., Lepekhova, S. A., Ezhikeeva, S. D., Ten, M. N., Osipov, V. G., and Konstantinov, Yu. M. (2012) The level of blood plasma mitochondrial DNA upon acute myocardium damage in experiment, Biopolym. Cell, 28, 321–324.

    Article  Google Scholar 

  107. Chang, C. P., Chia, R. H., Wu, T. L., Tsao, K. C., Sun, C. F., and Wu, J. T. (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction, Clin. Chim. Acta, 327, 95–101.

    Article  CAS  PubMed  Google Scholar 

  108. Sudakov, N. P., Popkova, T. P., Novikova, M. A., Katyshev, A. V., Goldberg, O. A., Nikiforov, S. B., Pushkarev, B. G., Klimenkov, I. V., Lepekhova, S. A., Apartsin, K. A., Nevinsky, G. A., and Konstantinov, Yu. M. (2015) Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia, Biochemistry (Moscow), 80, 1387–1392.

    Article  CAS  Google Scholar 

  109. Zhang, Q., Itagaki, K., and Hauser, C. J. (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase, Shock, 34, 55–59.

    Article  PubMed  CAS  Google Scholar 

  110. Itagaki, K., Kaczmarek, E., Lee, Y. T., Tang, I. T., Isal, B., Adibnia, Y., Sandler, N., Grimm, M. J., Segal, B. Y., Otterbein, E., and Hauser, C. J. (2015) Mitochondrial DNA released by trauma induces neutrophil extracellular traps, PLoS One, 10, e0120549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sursal, T., Stearns-Kurosawa, D. J., Itagaki, K., Oh, S. Y., Sun, S., Kurosawa, S., and Hauser, C. J. (2013) Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates, Shock, 39, 55–62.

    PubMed  PubMed Central  Google Scholar 

  113. Krysko, D. V., Agostinis, P., Krysko, O., Garg, A. D., Bachert, C., Lambrecht, B. N., and Vandenabeele, P. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation, Trends Immunol., 32, 157–164.

    Article  CAS  PubMed  Google Scholar 

  114. Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W., and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nat. Immunol., 12, 222–230.

    Article  CAS  PubMed  Google Scholar 

  115. Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M., and Tarkowski, A. (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses, J. Leucoc. Biol., 75, 995–1000.

    Article  CAS  Google Scholar 

  116. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., and Simon, H. U. (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ., 16, 1438–1444.

    Article  CAS  PubMed  Google Scholar 

  117. Ellinger, J., Muller, S. C., Wernert, N., Von Ruecker, A., and Bastian, P. J. (2008) Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy, BJU Int., 102, 628–632.

    Article  PubMed  Google Scholar 

  118. Arnalich, F., Codoceo, R., Lopez-Collazo, E., and Montiel, C. (2012) Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest, Resuscitation, 83, e162-163.

    Article  CAS  PubMed  Google Scholar 

  119. Lough, A. N., Roark, L. M., Kato, A., Ream, T. S., Lamb, J. C., Birchler, J. A., and Newton, K. J. (2008) Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize, Genetics, 178, 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stupar, R. M., Lilly, J. W., Town, C. D., Cheng, Z., Kaul, S., Buell, C. R., and Jiang, J. (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats, Proc. Natl. Acad. Sci. USA, 98, 5099–5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bateman, J. M., and Purton, S. (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker, Mol. Gen. Genet., 263, 404–410.

    Article  CAS  PubMed  Google Scholar 

  122. Fox, T. D., Sanford, J. C., and McMullin, T. W. (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA, Proc. Natl. Acad. Sci. USA, 85, 7288–7292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C., and Butow, R. A. (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles, Science, 240, 1538–1541.

    Article  CAS  PubMed  Google Scholar 

  124. Remacle, C., Cardol, P., Coosemans, N., Gaisne, M., and Bonnefoy, N. (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes, Proc. Natl. Acad. Sci. USA, 103, 4771–4776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Konstantinov.

Additional information

Original Russian Text © Yu. M. Konstantinov, A. Dietrich, F. Weber-Lotfi, N. Ibrahim, E. S. Klimenko, V. I. Tarasenko, T. A. Bolotova, M. V. Koulintchenko, 2016, published in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1307–1321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinov, Y.M., Dietrich, A., Weber-Lotfi, F. et al. DNA import into mitochondria. Biochemistry Moscow 81, 1044–1056 (2016). https://doi.org/10.1134/S0006297916100035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100035

Key words

Navigation