Skip to main content
Log in

Temporal scaling of age-dependent mortality: Dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable

  • Commentary
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The dynamics of aging is often described by survival curves that show the proportion of individuals surviving to a given age. The shape of the survival curve reflects the dependence of mortality on age, and it varies greatly for different organisms. In a recently published paper, Stroustrup and coauthors ((2016) Nature, {vn530}, 103–107) showed that many factors affecting the lifespan of Caenorhabditis elegans do not change the shape of the survival curve, but only stretch or compress it in time. Apparently, this means that aging is a programmed process whose trajectory is difficult to change, although it is possible to speed it up or slow it down. More research is needed to clarify whether the “rule of temporal scaling” is applicable to other organisms. A good indicator of temporal scaling is the coefficient of lifespan variation: similar values of this coefficient for two samples indicate similar shape of the survival curves. Preliminary results of experiments on adaptation of Drosophila melanogaster to unfavorable food show that temporal scalability of survival curves is sometimes present in more complex organisms, although this is not a universal rule. Both evolutionary and environmental changes sometimes affect only the average lifespan without changing the coefficient of variation (in this case, temporal scaling is present), but often both parameters (i.e. both scale and shape of the survival curve) change simultaneously. In addition to the relative stability of the coefficient of variation, another possible argument in favor of genetic determination of the aging process is relatively low variability of the time of death, which is sometimes of the same order of magnitude as the variability of timing of other ontogenetic events, such as the onset of sexual maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Giovanni Camarda, C., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    Article  CAS  PubMed  Google Scholar 

  3. Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.

    Article  CAS  Google Scholar 

  4. Zhmylev, P. Yu. (2006) Evolution of plant lifespan: facts and hypotheses, Zh. Obshch. Biol., 67, 107–119.

    Google Scholar 

  5. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  6. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  7. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nature Rev. Genet., 6, 866–872.

    Article  CAS  PubMed  Google Scholar 

  8. Burger, J. M. S., Hwangbo, D. S., Corby-Harris, V., and Promislow, D. E. L. (2007) The functional costs and benefits of dietary restriction in Drosophila, Aging Cell, 6, 63–71.

    Article  CAS  PubMed  Google Scholar 

  9. Khokhlov, A. N. (2009) Does aging require a separate program or the existing program of development is sufficient? Zh. Ross. Khim. Obshch. im. Mendeleeva, 53, 111–116.

    CAS  Google Scholar 

  10. Ayyadevara, S., Alla, R., Thaden, J. J., and Shmookler Reis, R. J. (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants, Aging Cell, 7, 13–22.

    Article  CAS  PubMed  Google Scholar 

  11. Grandison, R. C., Piper, M. D. W., and Partridge, L. (2009) Amino acid imbalance explains extension of lifespan by dietary restriction in Drosophila, Nature, 462, 1061–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., and Miller, R. A. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature, 460, 392–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.

    Article  CAS  Google Scholar 

  14. Pincus, Z., Smith-Vikos, T., and Slack, F. J. (2011) MicroRNA predictors of longevity in Caenorhabditis elegans, PLoS Genet., 7, e1002306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, A. P., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H., and Driscoll, M. (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans, Nature, 419, 808–814.

    Article  CAS  PubMed  Google Scholar 

  16. Stroustrup, N., Ulmschneider, B. E., Nash, Z. M., LopezMoyado, I. F., Apfeld, J., and Fontana, W. (2013) The Caenorhabditis elegans lifespan machine, Nat. Methods, 10, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin, G. M., Austad, S. N., and Johnson, T. E. (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses, Nat. Genet., 13, 25–34.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, D., Rea, S. L., Cypser, J. R., and Johnson, T. E. (2009) Mortality shifts in Caenorhabditis elegans: remembrance of conditions past, Aging Cell, 8, 666–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lithgow, G. J., White, T. M., Melov, S., and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress, Proc. Natl. Acad. Sci. USA, 92, 7540–7544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, T. E., Wu, D., Tedesco, P., Dames, S., and Vaupel, J. W. (2001) Age-specific demographic profiles of longevity mutants in Caenorhabditis elegans show segmental effects, J. Gerontol. Ser. A, 56, B331–B339.

    Article  CAS  Google Scholar 

  21. Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond. B Biol. Sci., 115, 513–585.

    Article  Google Scholar 

  22. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754–760.

    Article  CAS  Google Scholar 

  23. Chistyakov, V. A., and Denisenko, Yu. V. (2010) Imitational modeling of drosophila aging in silico, Usp. Gerontol., 23, 557–563.

    Google Scholar 

  24. Markov, A. V., Ivnitsky, S. B., Kornolova M. B., Naimark, E. B., Shirokova, N. G., and Perfilieva, K. S. (2015) Maternal effect masks adaptation to adverse conditions and hinders divergence in Drosophila melanogaster, Zh. Obshch. Biol., 76, 429–437.

    CAS  PubMed  Google Scholar 

  25. Sgro, C. M., and Partridge, L. (1999) A delayed wave of death from reproduction in Drosophila, Science, 286, 2521–2524.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. U. Yakovleva.

Additional information

Original Russian Text © A. V. Markov, E. B. Naimark, E. U. Yakovleva, 2016, published in Biokhimiya, 2016, Vol. 81, No. 8, pp. 1145-1152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.V., Naimark, E.B. & Yakovleva, E.U. Temporal scaling of age-dependent mortality: Dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable. Biochemistry Moscow 81, 906–911 (2016). https://doi.org/10.1134/S0006297916080125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916080125

Keywords

Navigation