Skip to main content
Log in

Binding of DNA with Abf2p increases efficiency of DNA uptake by isolated mitochondria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mutations in mitochondrial DNA often lead to severe hereditary diseases that are virtually resistant to symptomatic treatment. During the recent decades, many efforts were made to develop gene therapy approaches for treatment of such diseases using nucleic acid delivery into the organelles. The possibility of DNA import into mitochondria has been shown, but this process has low efficiency. In the present work, we demonstrate that the efficiency of DNA import can be significantly increased by preforming its complex with a mitochondria-targeted protein nonspecifically binding with DNA. As a model protein, we used the yeast protein Abf2p. In addition, we measured the length of the DNA site for binding this protein and the dissociation constant of the corresponding DNA–protein complex. Our data can serve as a basis for development of novel, highly efficient approaches for suppressing mutations in the mitochondrial genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiesner, R. J., Ruegg, J. C., and Morano, I. (1992) Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues, Biochem. Biophys. Res. Commun., 183, 553–559.

    Article  CAS  PubMed  Google Scholar 

  2. Legros, F., Malka, F., Frachon, P., Lombes, A., and Rojo, M. (2004) Organization and dynamics of human mitochondrial DNA, J. Cell Sci., 117, 2653–2662.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, X. J. (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA, Microbiol. Mol. Biol. Rev., 77, 476–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patrushev, M. V., Kamenski, P. A., and Mazunin, I. O. (2014) Mutations in mitochondrial DNA and approaches for their correction, Biochemistry (Moscow), 79, 1151–1160.

    Article  CAS  Google Scholar 

  5. Bonnefoy, N., and Fox, T. D. (2007) Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination, Methods Mol. Biol., 372, 153–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koulintchenko, M., Temperley, R. J., Mason, P. A., Dietrich, A., and Lightowlers, R. N. (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143–154.

    Article  CAS  PubMed  Google Scholar 

  7. Mileshina, D., Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2011) Transfection of plant mitochondria and in organello gene integration, Nucleic Acids Res., 39, e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weber-Lotfi, F., Koulintchenko, M. V., Ibrahim, N., Hammann, P., Mileshina, D. V., Konstantinov, Y. M., and Dietrich, A. (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways, Biochim. Biophys. Acta, 1853, 3165–3181.

    Article  CAS  PubMed  Google Scholar 

  9. Diffley, J. F., and Stillman, B. (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria, Proc. Natl. Acad. Sci. USA, 88, 7864–7868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okamoto, K., Perlman, P. S., and Butow, R. A. (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud, J. Cell Biol., 142, 613–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zelenaya-Troitskaya, O., Newman, S. M., Okamoto, K., Perlman, P. S., and Butow, R. A. (1998) Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae, Genetics, 148, 1763–1776.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. MacAlpine, D. M., Perlman, P. S., and Butow, R. A. (1998) The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo, Proc. Natl. Acad. Sci. USA, 95, 6739–6743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friddle, R. W., Klare, J. E., Martin, S. S., Corzett, M., Balhorn, R., Baldwin, E. P., Baskin, R. J., and Noy, A. (2004) Mechanism of DNA compaction by yeast mitochondrial protein Abf2p, Biophys. J., 86, 1632–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duckett, D. R., and Lilley, D. M. (1990) The three-way DNA junction is a Y-shaped molecule in which there is no helix-helix stacking, EMBO J., 9, 1659–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamashev, D., Balandina, A., Mazur, A., Arrimondo, P., and Rouviere-Yaniv, J. (2008) HU binds and folds singlestranded DNA, Nucleic Acids Res., 36, 1026–1036.

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman, B. A., Newman, S. M., Hallberg, R. L., Slaughter, C. A., Perlman, P. S., and Butow, R. A. (2000) In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins, Proc. Natl. Acad. Sci. USA, 97, 7772–7777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levitskii, S. A., Sycheva, A. M., Kharlampieva, D. D., Oberto, J., Kamashev, D. E., Serebryakova, M. V., Moshkovskii, S. A., Lazarev, V. N., and Govorun, V. M. (2011) Purification and functional analysis of recombinant Acholeplasma laidlawii histone-like HU protein, Biochimie, 93, 1102–1109.

    Article  Google Scholar 

  18. Gangelhoff, T., Mungalachetty, T. S., Nix, J. C., and Churchill, M. E. (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A, Nucleic Acids Res., 37, 3153–3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huisman, O., Faelen, M., Girard, D., Jaffe, A., Toussaint, A., and Rouviere-Yaniv, J. (1989) Multiple defects in Escherichia coli mutants lacking HU protein, J. Bacteriol., 171, 3704–3712.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poole, A. M., and Gribaldo, S. (2014) Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol., 6, a015990.

    Article  PubMed  Google Scholar 

  21. Luo, D., and Saltzman, W. M. (2000) Synthetic DNA delivery systems, Nat. Biotech., 18, 33–37.

    Article  CAS  Google Scholar 

  22. Guo, F., and Adhya, S. (2007) Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling, Proc. Natl. Acad. Sci. USA, 104, 4309–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngo, H. B., Kaiser, J. T., and Chan, D. C. (2011) The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA, Nat. Struct. Mol. Biol., 18, 1290–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurashenko, A. V., Samoilova, E. O., Baleva, M. V., Chicherin, I. V., Petrov, D. Y., Kamenski, P. A., and Levitskii, S. A. (2016) Two hmg-domains of mitochondrial protein Abf2p are different in the affinity for DNA, Bull. RSMU, 1, 68–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kamenski.

Additional information

Original Russian Text © E. O. Samoilova, I. A. Krasheninnikov, E. N. Vinogradova, P. A. Kamenski, S. A. Levitskii, 2016, published in Biokhimiya, 2016, Vol. 81, No. 7, pp. 953-961.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, E.O., Krasheninnikov, I.A., Vinogradova, E.N. et al. Binding of DNA with Abf2p increases efficiency of DNA uptake by isolated mitochondria. Biochemistry Moscow 81, 723–730 (2016). https://doi.org/10.1134/S0006297916070087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916070087

Keywords

Navigation