Skip to main content
Log in

Investigation of the mesenchymal stem cell compartment by means of a lentiviral barcode library

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The hematopoietic bone marrow microenvironment is formed by proliferation and differentiation of mesenchymal stem cells (MSCs). The MSC compartment has been less studied than the hematopoietic stem cell compartment. To characterize the structure of the MSC compartment, it is necessary to trace the fate of distinct mesenchymal cells. To do so, mesenchymal progenitors need to be marked at the single-cell level. A method for individual marking of normal and cancer stem cells based on genetic “barcodes” has been developed for the last 10 years. Such approach has not yet been applied to MSCs. The aim of this study was to evaluate the possibility of using such barcoding strategy to mark MSCs and their descendants, colony-forming units of fibroblasts (CFU-Fs). Adherent cell layers (ACLs) of murine long-term bone marrow cultures (LTBMCs) were transduced with a lentiviral library with barcodes consisting of 32 + 3 degenerate nucleotides. Infected ACLs were suspended, and CFU-F-derived clones were obtained. DNA was isolated from each individual colony, and barcodes were analyzed in marked CFU-F-derived colonies by means of conventional polymerase chain reaction and Sanger sequencing. Barcodes were identified in 154 marked colonies. All barcodes appeared to be unique: there were no two distinct colonies bearing the same barcode. It was shown that ACLs included CFU-Fs with different proliferative potential. MSCs are located higher in the hierarchy of mesenchymal progenitors than CFU-Fs, so the presented data indicate that MSCs proliferate rarely in LTBMCs. A method of stable individual marking and comparing the markers in mesenchymal progenitor cells has been developed in this work. We show for the first time that a barcoded library of lentiviruses is an effective tool for studying stromal progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACL:

adherent cell layer

CFU-Fs:

colonyforming units of fibroblasts

FBS:

fetal bovine serum

HSC:

hematopoietic stem cell

LTBMC:

long-term bone marrow culture

MSC:

mesenchymal stem cell

qRT-PCR:

quantitative real-time polymerase chain reaction

References

  1. Drize, N. J., Keller, J. R., and Chertkov, J. L. (1996) Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice, Blood, 88, 2927–2938.

    CAS  PubMed  Google Scholar 

  2. Kustikova, O. S., Baum, C., and Fehse, B. (2008) Retroviral integration site analysis in hematopoietic stem cells, Methods Mol. Biol., 430, 255–267.

    Article  CAS  PubMed  Google Scholar 

  3. Bystrykh, L. V., Verovskaya, E., Zwart, E., Broekhuis, M., and De Haan, G. (2012) Counting stem cells: methodological constraints, Nat. Methods, 9, 567–574.

    Article  CAS  PubMed  Google Scholar 

  4. Gerrits, A., Dykstra, B., Kalmykowa, O. J., Klauke, K., Verovskaya, E., Broekhuis, M. J. C., and Bystrykh, L. V. (2010) Cellular barcoding tool for clonal analysis in the hematopoietic system, Blood, 115, 2610–2618.

    Article  CAS  PubMed  Google Scholar 

  5. Verovskaya, E., Broekhuis, M. J. C., Zwart, E., Ritsema, M., Van Os, R., De Haan, G., and Bystrykh, L. V. (2013) Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding, Blood, 122, 523–532.

    Article  CAS  PubMed  Google Scholar 

  6. Cornils, K., Thielecke, L., Huser, S., Forgber, M., Thomaschewski, M., Kleist, N., Hussein, K., Riecken, K., Volz, T., Gerdes, S., Glauche, I., Dahl, A., Dandri, M., Roeder, I., and Fehse, B. (2014) Multiplexing clonality: combining RGB marking and genetic barcoding, Nucleic Acids Res., 42, e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glimm, H., Ball, C. R., and Von Kalle, C. (2011) You can count on this: barcoded hematopoietic stem cells, Cell Stem Cell, 9, 390–392.

    Article  CAS  PubMed  Google Scholar 

  8. Maetzig, T., Brugman, M. H., Bartels, S., Heinz, N., Kustikova, O. S., Modlich, U., Li, Z., Galla, M., Schiedlmeier, B., Schambach, A., and Baum, C. (2011) Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells, Blood, 117, 3053–3064.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, R., Neff, N. F., Quake, S. R., and Weissman, I. L. (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding, Nat. Biotechnol., 29, 928–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biasco, L., Scala, S., Basso Ricci, L., Dionisio, F., Baricordi, C., Calabria, A., Giannelli, S., Cieri, N., Barzaghi, F., Pajno, R., Al-Mousa, H., Scarselli, A., Cancrini, C., Bordignon, C., Roncarolo, M. G., Montini, E., Bonini, C., and Aiuti, A. (2015) In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T-memory stem cells, Sci. Transl. Med., 7, doi: 10.1126/scitranslmed.3010314.

  11. Caplan, A. I. (1991) Mesenchymal stem cells, J. Orthop. Res., 9, 641–650.

    Article  CAS  PubMed  Google Scholar 

  12. Bianco, P., and Robey, P. G. (2000) Marrow stromal stem cells, J. Clin. Invest., 105, 1663–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Owen, M., and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors, Ciba Found. Symp., 136, 42–60.

    CAS  PubMed  Google Scholar 

  14. Chertkov, J. L., and Gurevitch, O. A. (1984) Hematopoietic Stem Cell and Its Microenvironment [in Russian], Meditsina, Moscow.

    Google Scholar 

  15. Friedenstein, A. J., Chailakhjan, R. K., and Lalykina, K. S. (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet., 3, 393–403.

    CAS  PubMed  Google Scholar 

  16. Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp. Hematol., 4, 267–274.

    CAS  PubMed  Google Scholar 

  17. Kuznetsov, S. A., Friedenstein, A. J., and Robey, P. G. (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro, Br. J. Haematol., 97, 561–570.

    Article  CAS  PubMed  Google Scholar 

  18. Friedenstein, A. J., Chailakhyan, R. K., and Gerasimov, U. V. (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers, Cell Tissue Kinet., 20, 263–272.

    CAS  PubMed  Google Scholar 

  19. Chertkov, J. L., Drize, N. J., Gurevitch, O. A., and Udalov, G. A. (1983) Hemopoietic stromal precursors in long-term culture of bone marrow: I. Precursor characteristics, kinetics in culture, and dependence on quality of donor hemopoietic cells in chimeras, Exp. Hematol., 11, 231–242.

    CAS  PubMed  Google Scholar 

  20. Nifontova, I. N., Svinareva, D. A., and Drize, N. J. (2008) Stromal clonogenic precursors of hemopoietic microenvironment and their rank in the hierarchy of mesenchymal stem cells, Bull. Exp. Biol. Med., 145, 544–547.

    Article  CAS  PubMed  Google Scholar 

  21. Kuznetsov, S. A., Mankani, M. H., Bianco, P., and Robey, P. G. (2009) Enumeration of the colony-forming unitsfibroblast from mouse and human bone marrow in normal and pathological conditions, Stem Cell Res., 2, 83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dexter, T. M., Allen, T. D., and Lajtha, L. G. (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro, J. Cell. Physiol., 91, 335–344.

    Article  CAS  PubMed  Google Scholar 

  23. Chertkov, J. L., Drize, N. J., and Gurevitch, O. A. (1983) Hemopoietic stromal precursors in long-term culture of bone marrow: II. Significance of initial packing for creating a hemopoietic microenvironment and maintaining stromal precursors in the culture, Exp. Hematol., 11, 243–248.

    CAS  PubMed  Google Scholar 

  24. Gasparian, M. E., Elistratov, P. A., Drize, N. I., Nifontova, I. N., Dolgikh, D. A., and Kirpichnikov, M. P. (2009) Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2), Biochemistry (Moscow), 74, 221–225.

    Article  CAS  Google Scholar 

  25. Bigildeev, A. E., Zhironkina, O. A., Shipounova, I. N., Sats, N. V., Kotyashova, S. Y., and Drize, N. I. (2012) Clonal composition of human multipotent mesenchymal stromal cells, Exp. Hematol., 40, 847–856.

    Article  PubMed  Google Scholar 

  26. Weber, K., Bartsch, U., Stocking, C., and Fehse, B. (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis, Mol. Ther., 16, 698–706.

    Article  CAS  PubMed  Google Scholar 

  27. Excoffier, L., and Lischer, H. E. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 10, 564–567.

    Article  PubMed  Google Scholar 

  28. Sats, N. V., Shipunova, I. N., Bigil’deev, A. E., Kostyushev, D. S., and Drize, N. I. (2015) Peculiarities of gene transfer into mesenchymal stem cells, Bull. Exp. Biol. Med., 159, 134–137.

    Article  CAS  PubMed  Google Scholar 

  29. Sats, N. V., Shipounova, I. N., Bigildeev, A. E., Svinareva, D. A., Zhironkina, O. A., and Drize, N. J. (2010) Characteristics of mesenchymal stromal precursor cells labeled with lentiviral vector in long-term bone marrow culture, Bull. Exp. Biol. Med., 150, 109–112.

    Article  CAS  PubMed  Google Scholar 

  30. Mamonov, V. E., Shipounova, I. N., Sats, N. V., Bigildeev, A. E., Svinareva, D. A., Proskurina, N. V., Riashentsev, M. M., Chemis, A. G., and Drize, N. I. (2012) Participation of cultured mesenchymal multipotent stromal cells in regeneration of a large persisting defect of rabbit radius bone, Open Tissue Eng. Regen. Med. J., 5, 1–8.

    Article  CAS  Google Scholar 

  31. Zhironkina, O. A., Shipounova, I. N., Bigildeev, A. E., Sats, N. V., Petinati, N. A., and Drize, N. I. (2012) Proliferative potential of multipotent mesenchymal stromal cells from human bone marrow, Bull. Exp. Biol. Med., 152, 543–547.

    Article  CAS  PubMed  Google Scholar 

  32. Simmons, P. J., and Torok-Storb, B. (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1, Blood, 78, 55–62.

    CAS  PubMed  Google Scholar 

  33. Lee, M. W., Kim, D. S., Yoo, K. H., Kim, H. R., Jang, I. K., Lee, J. H., Jung, H. L., Sung, K. W., and Koo, H. H. (2013) Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions, Blood Res., 48, 107–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bigildeev.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 4, pp. 516-526.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-277, January 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigildeev, A.E., Cornils, K., Aranyossy, T. et al. Investigation of the mesenchymal stem cell compartment by means of a lentiviral barcode library. Biochemistry Moscow 81, 373–381 (2016). https://doi.org/10.1134/S0006297916040076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916040076

Keywords

Navigation