Skip to main content
Log in

Structure and noncanonical activities of coat proteins of helical plant viruses

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSMV:

barley stripe mosaic virus

CP:

coat or capsid protein

HR:

hypersensitive response

MP:

movement protein

MT:

microtubules

PD:

plasmodesmata

PR-genes:

pathogenesis-related genes

PVA:

potato virus A

PVX:

potato virus X

RNP complex:

ribonucleoprotein complex

RTM resistance:

resistance associated with restricting long-distance movement of tobacco etch virus

SL1:

stem-loop 1

TGB:

triple gene block

TGB1:

protein encoded by the first gene of TGB

TMV:

tobacco mosaic virus

ToMV:

tomato mosaic virus

5′UTR:

5′-untranslated region

VRC:

virus replicative complex

References

  1. Stubbs, G., and Kendall, A. (2012) Helical viruses, Adv. Exp. Med. Biol., 726, 631–658.

    Article  CAS  PubMed  Google Scholar 

  2. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. (eds.) (2005) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses, Elsevier/Academic, London.

    Google Scholar 

  3. Carstens, E. B. (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses, Arch. Virol., 155, 133–146.

    Article  CAS  PubMed  Google Scholar 

  4. Lopez-Moya, J. J., and Garcia, J. A. (2008) Encyclopedia of Virology, 3rd Edn., Elsevier/Academic, London.

    Google Scholar 

  5. Scholthof, K. B., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., and Foster, G. D. (2011) Top 10 plant viruses in molecular plant pathology, Mol. Plant Pathol., 12, 938–954.

    Article  CAS  PubMed  Google Scholar 

  6. Hefferon, K. (2013) Plant-derived pharmaceuticals for the developing world, Biotechnol. J., 8, 1193–1202.

    CAS  PubMed  Google Scholar 

  7. McCormick, A. A., and Palmer, K. E. (2008) Genetically engineered tobacco mosaic virus as nanoparticle vaccines, Expert Rev. Vaccines, 7, 33–41.

    Article  CAS  PubMed  Google Scholar 

  8. Love, A. J., Makarov, V., Yaminsky, I., Kalinina, N. O., and Taliansky, M. E. (2014) The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials, Virology, 449, 133–139.

    Article  CAS  PubMed  Google Scholar 

  9. Bruckman, M. A., Hern, S., Jiang, K., Flask, C. A., Yu, X., and Steinmetz, N. F. (2013) Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents, Biol. Med., 1, 1482–1490.

    CAS  Google Scholar 

  10. Kaur, G., Valarmathi, M. T., Potts, J. D., Jabbari, E., SaboAttwood, T., and Wang, Q. (2010) Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates, Biomaterials, 31, 1732–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, L. A., Nguyen, Q. L., Wu, L., Horvath, G., Nelson, R. S., and Wang, Q. (2012) Mutant plant viruses with cell binding motifs provide differential adhesion strengths and morphologies, Biomacromolecules, 13, 422–431.

    Article  CAS  PubMed  Google Scholar 

  12. Matthews, E. F. R. (1982) Plant Viruses, Academic Press, New York.

    Google Scholar 

  13. Dolja, V. V., Boyko, V. P., Agranovsky, A. A., and Koonin, E. V. (1991) Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation, Virology, 184, 79–86.

    Article  CAS  PubMed  Google Scholar 

  14. Stubbs, G. (1989) The probability distributions of X-ray intensities in fiber diffraction: largest likely values for fiber diffraction R factors, Acta Crystallogr. A, 45, 254–258.

    Article  PubMed  Google Scholar 

  15. Wang, H., and Stubbs, G. (1994) Structure determination of cucumber green mottle mosaic virus by X-ray fiber diffraction. Significance for the evolution of tobamoviruses, J. Mol. Biol., 239, 371–384.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, S., Wang, T., Bohon, J., Gagne, M. E., Bolduc, M., Leclerc, D., and Li, H. (2012) Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus, J. Mol. Biol., 422, 263–273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Webera, P., and Bujarski, J. (2015) Multiple functions of capsid proteins in (+)stranded RNA viruses during plant–virus interactions, Virus Res., 196, 140–149.

    Article  CAS  Google Scholar 

  18. Harrison, B. D., and Wilson, T. M. A. (1999) Milestones in research on tobacco mosaic virus, Phil. Trans. R. Soc. Lond. B, 354, 521–529.

    Article  CAS  Google Scholar 

  19. Holmes, K., Stubbs, J., Mandelkow, E., and Gallwitz, U. (1975) Structure of tobacco mosaic virus at 6.7 Å resolution, Nature, 254, 192–196.

    Article  CAS  PubMed  Google Scholar 

  20. Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R., and Klug, A. (1978) Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits, Nature, 276, 362–368.

    Article  CAS  PubMed  Google Scholar 

  21. Stubbs, S., and Warren, K. (1977) Structure of RNA and RNA binding site in tobacco mosaic virus from 4-A map calculated from X-ray fiber diagrams, Nature, 267, 216–221.

    Article  CAS  PubMed  Google Scholar 

  22. Namba, K., Pattanayek, R., and Stubbs, G. (1989) Visualization of protein–nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction, J. Mol. Biol., 208, 307–325.

    Article  CAS  PubMed  Google Scholar 

  23. Clare, D. K., and Orlova, E. V. (2010) 4.6 Å cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k × 4k CCD camera, J. Struct. Biol., 171, 303–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ge, P., and Zhou, Z. H. (2011) Hydrogen-binding networks and RNA bases revealed by cryoelectron microscopy suggest a triggering mechanism for calcium switches, Proc. Natl. Acad. Sci. USA, 108, 9637–9642.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Namba, K., and Stubbs, G. (1986) Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly, Science, 231, 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  26. Culver, J. N., Dawson, W. O., Plonk, K., and Stubbs, G. (1995) Site-specific mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus, Virology, 206, 724–730.

    Article  CAS  PubMed  Google Scholar 

  27. Lu, B., Stubbs, G., and Culver, J. N. (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus, Virology, 225, 11–20.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, B., Stubbs G., and Culver, J. N. (1998) Coat protein interactions involved in tobacco mosaic tobamovirus crossprotection, Virology, 248, 188–198.

    Article  CAS  PubMed  Google Scholar 

  29. Pattanayek, R., and Stubbs, G. (1992) Structure of the U2 strain of tobacco mosaic virus refined at 3.5 Å resolution using X-ray fiber diffraction, J. Mol. Biol., 228, 516–528.

    Article  CAS  PubMed  Google Scholar 

  30. Lobert, S., Heil, P., Namba, K., and Stubbs, G. (1987) Preliminary X-ray fiber diffraction studies of cucumber green mottle mosaic virus, watermelon strain, J. Mol. Biol., 196, 935–938.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H., Culver, J. N., and Stubbs, G. (1997) Structure of ribgrass mosaic virus at 2.9 Å resolution: evolution and taxonomy of tobamoviruses, J. Mol. Biol., 269, 769–779.

    Article  CAS  PubMed  Google Scholar 

  32. Planchart, A. (1995) X-Ray Fiber Diffraction Studies of Odontoglossum Ringspot Virus: Lessons on How Nature Produces a Virus with a Different Host Specificity: Thesis, Vanderbilt University.

    Google Scholar 

  33. Wilson, T. M., and McNicol, J. W. (1995) A conserved precise RNA encapsidation pattern in Tobamovirus particles, Arch. Virol., 140, 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  34. Culver, J. N. (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance, Annu. Rev. Phytopathol., 40, 287–308.

    Article  CAS  PubMed  Google Scholar 

  35. Mundry, K. W., Watkins, P. A., Ashfield, T., Plaskitt, K. A., Eisele-Walter, S., and Wilson, T. M. (1991) Complete uncoating of the 5'-leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational virus disassembly in vitro, J. Gen. Virol., 72, 769–777.

    Article  CAS  PubMed  Google Scholar 

  36. Okada, Y. (1999) Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 569–582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kendall, A., Williams, D., Bian, W., Stewart, P. L., and Stubbs, G. (2013) Barley stripe mosaic virus: structure and relationship to the tobamoviruses, Virology, 443, 265–270.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, S., Wang, T., Bohon, J., Gagne, M. E., and Bolduc, M. (2012) Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus, J. Mol. Biol., 422, 263–273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kendall, A., McDonald, M., Bian, W., Bowles, T., Baumgarten, S. C., Shi, J., Stewart, P. L., Bullitt, E., Gore, D., Irving, T. C., Havens, W. M., Ghabrial, S. A., Wall, J. S., and Stubbs, G. (2008) Structure of flexible filamentous plant viruses, J. Virol., 82, 9546–9554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. McDonald, M., Kendall, A., Bian, W., McCullough, I., Lio, E., Havens, W. W., Ghabrial, S. A., and Stubbs, G. (2010) Architecture of the potyviruses, Virology, 30, 309–313.

    Article  CAS  Google Scholar 

  41. Baratova, L. A., Grebenshchikov, N. I., Dobrov, E. N., Gedrovich, A. V., Kashirin, I. A., Shishkov, A. V., Efimov, A. V., Jarvekulg, L., Radavsky, Y. L., and Saarma, M. (1992) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building, Virology, 188, 175–180.

    Article  CAS  PubMed  Google Scholar 

  42. Baratova, L. A., Fedorova, N. V., Dobrov, E. N., Lukashina, E. V., Kharlanov, A. N., Nasonov, V. V., Serebryakova, M. V., Kozlovsky, S. V., Zayakina, O. V., and Rodionova, N. P. (2004) N-terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface, Eur. J. Biochem., 271, 3136–3145.

    Article  CAS  PubMed  Google Scholar 

  43. Nemykh, M. A., Efimov, A. V., Novikov, V. K., Orlov, V. N., Arutyunyan, A. M., Drachev, V. A., Lukashina, E. V., Baratova, L. A., and Dobrov, E. N. (2008) One more probable structural transition in potato virus X virions and a revised model of the virus coat protein structure, Virology, 373, 61–71.

    Article  CAS  PubMed  Google Scholar 

  44. Baratova, L., Efimov, A. V., Dobrov, E. N., Fedorova, N. V., Hunt, R., Badun, G. A., Ksenofontov, A. L., Torrance, L., and Jarvekulg, L. (2001) In situ spatial organization of potato virus A coat protein subunits as assessed by tritium bombardment, J. Virol., 75, 9696–9702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ksenofontov, A. L., Parshina, E. Y., Fedorova, N. V., Arutyunyan, A. M., Rumvolt, R., Paalme, V., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2015) Heatinginduced transition of potyvirus potato virus A coat protein into β-structure, J. Biomol. Struct. Dyn., 8, 1–9.

    Google Scholar 

  46. Ksenofontov, A. L., Paalme, V., Arutyunyan, A. M., Semenyuk, P. I., Fedorova, N. V., Rumvolt, R., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2013) Partially disordered structure in intravirus coat protein of potyvirus potato virus A, PLoS One, 8, e67830.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Uversky, V. N. (2002) Natively unfolded proteins: a point where biology waits for physics, Protein Sci., 11, 739–756.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Xue, B., Blocquel, D., Habchi, J., Uversky, A. V., Kurgan, L., Uversky, V. N., and Longhi, S. (2014) Structural disorder in viral proteins, Chem. Rev., 114, 6880–6911.

    Article  CAS  PubMed  Google Scholar 

  49. Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., and Babu, M. M. (2014) Classification of intrinsically disordered regions and proteins, Chem. Rev., 114, 6589–6598.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Habchi, J., Tompa, P., Longhi, S., and Uversky, V. N. (2014) Introducing protein intrinsic disorder, Chem. Rev., 114, 6561–6588.

    Article  CAS  PubMed  Google Scholar 

  51. Gunasekaran, K., Tsai, C. J., Kumar, S., Zanuy, D., and Nussinov, R. (2003) Extended disordered proteins: targeting function with less scaffold, Trends Biochem. Sci., 28, 81–85.

    Article  CAS  PubMed  Google Scholar 

  52. Jeffery, C. J. (2009) Moonlighting proteins–an update, Mol. Biosyst., 5, 345–350.

    Article  CAS  PubMed  Google Scholar 

  53. Makarov, V. V., Skurat, E. V., Semenyuk, P. I., Abashkin, D. A., Kalinina, N. O., Arutyunyan, A. M., Solovyev, A. G., and Dobrov, E. N. (2013) Structural lability of barley stripe mosaic virus virions, PLoS One, 8, e60942.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Callaway, A., Giesman-Cookmeyer, D., Gillock, E. T., Sit, T. L., and Lommel, S. A. (2001) The multifunctional capsid proteins of plant RNA viruses, Annu. Rev. Phytopathol., 39, 419–460.

    Article  CAS  PubMed  Google Scholar 

  55. Ivanov, K. I., and Makinen, K. (2012) Coat proteins, host factors and plant viral replication, Curr. Opin. Virol., 2, 712–718.

    Article  CAS  PubMed  Google Scholar 

  56. Hipper, C., Brault, V., Ziegler-Graff, V., and Revers, F. (2013) Viral and cellular factors involved in phloem transport of plant viruses, Front. Plant Sci., 4, 154–162.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Morozov, S. Y., and Solovyev, A. G. (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement, J. Gen. Virol., 84, 1351–1366.

    Article  CAS  PubMed  Google Scholar 

  58. Park, M. R., Kwon, S. J., Choi, H. S., Hemenway, C. L., and Kim, K. H. (2008) Mutations that alter a repeated ACCA element located at the 5' end of the potato virus X genome affect RNA accumulation, Virology, 378, 1333–1341.

    Article  CAS  Google Scholar 

  59. Lough, T. J., Lee, R. H., Emerson, S. J., Forster, R. L., and Lucas, W. J. (2006) Functional analysis of the 5'-untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement, Virology, 351, 455–465.

    Article  CAS  PubMed  Google Scholar 

  60. Lu, H. C., Chen, C. E., Tsai, M. H., Wang, H. I., Su, H. J., and Yeh, H. H. (2009) Cymbidium mosaic potexvirus isolate-dependent host movement systems reveal two movement control determinants and the coat protein is the dominant, Virology, 388, 147–159.

    Article  CAS  PubMed  Google Scholar 

  61. Lough, T. J., Emerson, S. J., Lucas, W. J., and Forster, R. L. (2001) Trans-complementation of long-distance movement of white clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1, Virology, 288, 18–28.

    Article  CAS  PubMed  Google Scholar 

  62. Fedorkin, O. N., Merits, A., Lucchesi, J., Solovyev, A. G., Saarma, M., Morozov, S. Y., and Makinen, K. (2000) Complementation of the movement-deficient mutations in potato virus X: potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein, Virology, 270, 31–42.

    Article  CAS  PubMed  Google Scholar 

  63. Kiselyova, O. I., Yaminsky, I. V., Karpova, O. V., Rodionova, N. P., Kozlovsky, S. V., Arkhipenko, M. V., and Atabekov, J. G. (2003) AFM study of potato virus X disassembly induced by movement protein, J. Mol. Biol. 332, 321–323.

    Article  CAS  PubMed  Google Scholar 

  64. Karpova, O. V., Zayakina, O. V., Arkhipenko, M. V., Sheval, E. V., Kiselyova, O. I., Poljakov, V. Y., Yaminsky, I. V., Rodionova, N. P., and Atabekov, J. G. (2006) Potato virus X RNA-mediated assembly of single-tailed ternary “coat protein–RNAmovement protein” complexes, J. Gen. Virol., 87, 2731–2740.

    Article  CAS  PubMed  Google Scholar 

  65. Zayakina, O., Arkhipenko, M., Kozlovsky, S., Nikitin, N., Smirnov, A., Susi, P., Rodionova, N., Karpova, O., and Atabekov, J. (2008) Mutagenic analysis of potato virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation, Mol. Plant Pathol., 9, 37–44.

    CAS  PubMed  Google Scholar 

  66. Lee, C. C., Ho, Y. N., Hu, R. H., Yen, Y. T., Wang, Z. C., Lee, Y. C., Hsu, Y. H., and Meng, M. (2011) The interaction between bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts, J. Virol., 85, 12022–12031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Rakitina, D. V., Kantidze, O. L., Leshchiner, A. D., Solovyev, A. G., Novikov, V. K., Morozov, S. Y., and Kalinina, N. O. (2005) Coat proteins of two filamentous plant viruses display NTPase activity in vitro, FEBS Lett., 579, 4955–4960.

    Article  CAS  PubMed  Google Scholar 

  68. Fedorkin, O., Solovyev, A., Yelina, N., Zamyatnin, A., Jr., Zinovkin, R., Makinen, K., Schiemann, J., and Morozov, S. (2001) Cell-to-cell movement of potato virus X involves distinct functions of the coat protein, J. Gen. Virol., 82, 449–458.

    Article  CAS  PubMed  Google Scholar 

  69. Atabekov, J. G., Malyshenko, S. I., Morozov, S., Taliansky, M. E., Solovyev, A. G., Agranovsky, A. A., and Shapka, N. A. (1999) Identification and study of tobacco mosaic virus movement function by complementation tests, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 629–635.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ryabov, E. V., Oparka, K. J., Santa Cruz, S., Robinson, D. J., and Taliansky, M. E. (1998) Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors, Virology, 242, 303–313.

    Article  CAS  PubMed  Google Scholar 

  71. Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., and Oparka, K. J. (2013) Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata, J. Cell Biol., 201, 981–995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Peremyslov, V. V., Andreev, I. A., Prokhnevsky, A. I., Duncan, G. H., Taliansky, M. E., and Dolja, V. V. (2004) Complex molecular architecture of beet yellows virus particles, Proc. Natl. Acad. Sci. USA, 101, 5030–5035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gabrenaite-Verkhovskaya, R., Andreev, I. A., Kalinina, N. O., Torrance, L., Taliansky, M. E., and Makinen, K. (2008) Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants, J. Gen. Virol., 89, 829–838.

    Article  CAS  PubMed  Google Scholar 

  74. Komatsu, K., Yamaji, Y., Ozeki, J., Hashimoto, M., Kagiwada, S., Takahashi, S., and Namba, S. (2008) Nucleotide sequence analysis of seven Japanese isolates of Plantago asiatica mosaic virus (PlAMV): a unique potexvirus with significantly high genomic and biological variability within the species, Arch. Virol., 153, 193–198.

    Article  CAS  PubMed  Google Scholar 

  75. Chapman, S., Hills, G., Watts, J., and Baulcombe, D. (1992). Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity, Virology, 191, 223–230.

    Article  CAS  PubMed  Google Scholar 

  76. Lico, C., Capuano, F., Renzone, G., Donini, M., Marusic, C., Scaloni, A., Benvenuto, E., and Baschieri, S. (2006) Peptide display on potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles, J. Gen. Virol., 87, 3103–3112.

    Article  CAS  PubMed  Google Scholar 

  77. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Novikov, V. K., and Arkhipenko, M. V. (2001) Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation, Virology, 286, 466–474.

    Article  CAS  PubMed  Google Scholar 

  78. Ozeki, J., Hashimoto, M., Komatsu, K., Maejima, K., Himeno, M., Senshu, H., Kawanishi, T., Kagiwada, S., Yamaji, Y., and Namba, S. (2009) The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly, Mol. Plant Microbe Interact., 22, 677–685.

    Article  CAS  PubMed  Google Scholar 

  79. Betti, C., Lico, C., Maffi, D., D’ Angeli, S., Altamura, M. M., Benvenuto, E., Faoro, F., and Baschieri, S. (2012) Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants, Mol. Plant Pathol., 13, 198–203.

    Article  CAS  PubMed  Google Scholar 

  80. Park, M. R., Park, S. H., Cho, S. Y., and Kim, K. H. (2009) Nicotiana benthamiana protein, NbPCIP1, interacting with potato virus X coat protein plays a role as susceptible factor for viral infection, Virology, 386, 257–269.

    Article  CAS  PubMed  Google Scholar 

  81. Park, M. R., and Kim, K. H. (2013) Molecular characterization of the interaction between the N-terminal region of potato virus X (PVX) coat protein (CP) and Nicotiana benthamiana PVX CP-interacting protein NbPCIP1, Virus Genes, 46, 517–523.

    Article  CAS  PubMed  Google Scholar 

  82. Cho, S. Y., Cho, W. K., Sohn, S. H., and Kim, K. H. (2012) Interaction of the host protein NbDnaJ with potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement, Biochem. Biophys. Res. Commun., 417, 451–456.

    Article  CAS  PubMed  Google Scholar 

  83. Cho, S. Y., Cho, W., and Kim, K. H. (2012) Identification of tobacco proteins associated with the stem-loop 1 RNAs of potato virus X, Mol. Cells, 33, 379–384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Mathioudakis, M. M., Veiga, R., Ghita, M., Tsikou, D., Medina, V., Canto, T., Makris, A. M., and Livieratos, I. C. (2012) Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70, Virus Res., 163, 28–39.

    Article  CAS  PubMed  Google Scholar 

  85. Mathioudakis, M. M., Rodriguez, L. M., Sempere, R. N., Aranda, M. A., and Livieratos, I. (2014) Multifaceted capsid proteins: multiple interactions suggest multiple roles for pepino mosaic virus capsid protein, Mol. Plant Microbe Interact., 27, 1356–1369.

    Article  PubMed  CAS  Google Scholar 

  86. Serazev, T. V., Nadezhdina, E. S., Shanina, N. A., Leshchiner, A. D., Kalinina, N. O., and Morozov, S. Y. (2003) Virions and the coat protein of the potato virus X interact with microtubules and induce tubulin polymerization in vitro, Mol. Biol., 37, 919–925.

    Article  CAS  Google Scholar 

  87. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G., and Carrington, J. C. (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants, EMBO J., 13, 1482–1491.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Torrance, L., Andreev, I. A., Gabrenaite-Verhovskaya, R., Cowan, G., Makinen, K., and Taliansky, M. E. (2006) An unusual structure at one end of potato potyvirus particles, J. Mol. Biol., 357, 1–8.

    Article  CAS  PubMed  Google Scholar 

  89. Nicolas, O., Dunnington, S. W., Gotow, L. F., Pirone, T. P., and Hellmann, G. M. (1997) Variations in the VPg protein allow a potyvirus to overcome a gene resistance in tobacco, Virology, 237, 452–459.

    Article  CAS  PubMed  Google Scholar 

  90. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. (1995) Capsid protein determinants involved in cell-to-cell and long-distance movement of tobacco etch potyvirus, Virology, 206, 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  91. Alzhanova, D. V., Hagiwara, Y., Peremyslov, V. V., and Dolja, V. V. (2000) Genetic analysis of the cell-to-cell movement of beet yellows closterovirus, Virology, 268, 192–200.

    Article  CAS  PubMed  Google Scholar 

  92. Salvador, B., Delgadillo, M. O., Saenz, P., Garcia, J. A., and Simon-Mateo, C. (2008) Identification of plum pox virus pathogenicity determinants in herbaceous and woody hosts, Mol. Plant Microbe Interact., 21, 20–29.

    Article  CAS  PubMed  Google Scholar 

  93. Tatineni, S., Van Winkle, D. H., and French, R. (2011) The N-terminal region of wheat streak mosaic virus coat protein is a hostand strain-specific long-distance transport factor, J. Virol., 85, 1718–1731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Tatineni, S., and French, R. (2014) The C-terminus of wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport, Mol. Plant Microbe Interact., 27, 150–162.

    Article  CAS  PubMed  Google Scholar 

  95. Mahajan, S. K., Chisholm, S. T., Whitham, S. A., and Carrington, J. C. (1998) Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana, Plant J., 14, 177–186.

    Article  CAS  PubMed  Google Scholar 

  96. Decroocq, V., Sicard, O., Alamillo, J. M., Lansac, M., Eyquard, J.-P., Garcia, J. A., Candresse, T., Le Gall, O., and Revers, F. (2006) Multiple resistance traits control plum pox viral infection in Arabidopsis thaliana, Mol. Plant Microbe Interact., 19, 541–549.

    Article  CAS  PubMed  Google Scholar 

  97. Decroocq, V., Salvador, B., Sicard, O., Glasa, M., Cosson, P., Svanella-Dumas, L., Revers, F., Garcia, J. A., and Candresse, T. (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein, Mol. Plant Microbe Interact., 22, 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  98. Cosson, P., Schurdi-Levraud, V., Le, Q. H., Sicard, O., Caballero, M., Roux, F., Le Gall, O., Candresse, T., and Revers, F. (2012) The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes, PLoS One, 7, e39169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Fernandez-Fernandez, M. R., Camafeita, E., Bonay, P., Mendez, E., Albar, J. P., and Garcia, J. A. (2002) The capsid protein of a plant single-stranded RNA virus is modified by O-linked N-acetylglucosamine, J. Biol. Chem., 277, 135–140.

    Article  CAS  PubMed  Google Scholar 

  100. Ivanov, K. I., Puustinen, P., Gabrenaite, R., Vihinen, H., Ronnstrand, L., and Valmu, L. (2003) Phosphorylation of the potyvirus capsid protein by protein kinase ck2 and its relevance for viral infection, Plant Cell, 15, 2124–2139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Lazarowitz, S. G., and Beachy, R. N. (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants, Plant Cell, 11, 535–548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Lucas, W. J. (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes, Virology, 344, 169–184.

    Article  CAS  PubMed  Google Scholar 

  103. Asurmendi, S., Berg, R. H., Koo, J. C., and Beachy, R. N. (2004) Coat protein regulates formation of replication complexes during tobacco mosaic viral infection, Proc. Natl. Acad. Sci. USA, 101, 1415–1420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Bendahmane, M., Szecsi, J., Chen, I., Berg, R. H., and Beachy, R. N. (2002) Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-tocell movement, Proc. Natl. Acad. Sci. USA, 99, 3645–3650.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Bendahmane, M., Fitchen, J. H., Zhang, G., and Beachy, R. N. (1997) Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance, J. Virol., 71, 7942–7950.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Asurmendi, S., Berg, R. H., Smith, T. J., Bendahmane, M., and Beachy, R. N. (2007) Aggregation of TMV CP plays a role in CP functions and in coat protein-mediated resistance, Virology, 366, 98–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Kawakami, S., Watanabe, Y., and Beachy, R. N. (2004) Tobacco mosaic viral infection spreads cell to cell as intact replication complexes, Proc. Natl. Acad. Sci. USA, 101, 6291–6296.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Saito, T., Yamanaka, K., and Okada, Y. (1990) Long-distance movement and viral assembly of tobacco mosaic virus mutants, Virology, 176, 329–336.

    Article  CAS  PubMed  Google Scholar 

  109. Ding, S. W., Li, W. X., and Symons, R. H. (1995) A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement, EMBO J., 14, 5762–5772.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Chen, M.-H., and Citovsky, V. (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase, Plant J., 35, 386–392.

    Article  CAS  PubMed  Google Scholar 

  111. Ding, X. S., Liu, J., Cheng, N. H., Folimonov, A., Hou, Y. M., Bao, Y., Katagi, C., Carter, S. A., and Nelson, R. S. (2004) The tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing, Mol. Plant Microbe Interact., 17, 583–592.

    Article  CAS  PubMed  Google Scholar 

  112. Li, Y., Wu, M. Y., Song, H., Hu, X., and Qiu, B. S. (2005) Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus, Arch. Virol., 150, 1993–2008.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, C., Liu, Y., Sun, X., Qian, W., Zhang, D., and Qiu, B. (2008) Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and tomato mosaic virus coat protein, Biochem. Biophys. Res. Commun., 374, 253–257.

    Article  CAS  PubMed  Google Scholar 

  114. Serrano, C., Gonzalez-Cruz, J., Jauregui, F., Medina, C., Mancilla, P., and Matus, J. T. (2008) Genetic and histological studies on the delayed systemic movement of tobacco mosaic virus in Arabidopsis thaliana, BMC Genet., 9, 59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Swanson, M., Barker, H., and MacFarlane, S. (2002) Rapid vascular movement of tobraviruses does not require coat protein: evidence from mutated and wild type viruses, Ann. Appl. Biol., 141, 259–266.

    Article  CAS  Google Scholar 

  116. Savenkov, E. I. (2003) Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana, J. Gen. Virol., 84, 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  117. McGeachy, K. D., and Barker, H. (2000) Potato mop-top virus RNA can move long distance in the absence of coat protein: evidence from resistant, transgenic plants, Mol. Plant Microbe Interact., 13, 125–128.

    Article  CAS  PubMed  Google Scholar 

  118. Torrance, L., Lukhovitskaya, N. I., Schepetilnikov, M. V., Cowan, G. H., Ziegler, A., and Savenkov, E. I. (2009) Unusual long-distance movement strategies of potato mop-top virus RNAs in Nicotiana benthamiana, Mol. Plant Microbe Interact., 22, 381–390.

    Article  CAS  PubMed  Google Scholar 

  119. Cowan, G. H., Torrance, L., and Reavy, B. (1997) Detection of potato mop-top virus capsid read through protein in virus particles, J. Gen. Virol., 78, 1779–1783.

    Article  CAS  PubMed  Google Scholar 

  120. Solovyev, A. G., and Savenkov, E. I. (2014) Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus, J. Exp. Bot., 13, 2–9.

    Google Scholar 

  121. Di Carli, M., Benvenuto, E., and Donini, M. (2012) Recent insights into plant–virus interactions through proteomic analysis, J. Proteome Res., 11, 4765–4780.

    Article  PubMed  CAS  Google Scholar 

  122. Taraporewala, Z. F., and Culver, J. N. (1997) Structural and functional conservation of the tobamovirus coat protein elicitor active site, Mol. Plant Microbe Interact., 10, 597–604.

    Article  CAS  Google Scholar 

  123. Ehrenfeld, N., Gonzalez, A., Canon, P., Medina, C., Perez-Acle, T., and Arce-Johnson, P. (2008) Structure–function relationship between the tobamovirus TMV-Cg coat protein and the HR-like response, J. Gen. Virol., 89, 809–817.

    Article  CAS  PubMed  Google Scholar 

  124. Mizumoto, H., Nakamura, I., Shimomoto, Y., Sawada, H., Tomita, R., Sekine, K. T., Kiba, A., Nishiguchi, M., Kobayashi, K., and Hikichi, Y. (2012) Amino acids in tobamovirus coat protein controlling pepper L(1a) genemediated resistance, Mol. Plant Pathol., 13, 915–922.

    Article  CAS  PubMed  Google Scholar 

  125. Huh, S. U., Choi, L. M., Lee, G. J., Kim, Y. J., and Paek, K. H. (2012) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic viral infection, Plant Sci., 197, 50–58.

    Article  CAS  PubMed  Google Scholar 

  126. Conti, G., Rodriguez, M. C., Manacorda, C. A., and Asurmendi, S. (2012) Transgenic expression of tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum, Mol. Plant Microbe Interact., 10, 1370–1384.

    Article  CAS  Google Scholar 

  127. Rodriguez, M., Conti, G., Zavallo, D., Manacorda, C., and Asurmendi, S. (2014) TMV Cg coat protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection, BMC Plant Biol., 14, 210–216.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Bendahmane, A., Kohn, B. A., Dedi, C., and Baulcombe, D. C. (1995) The coat protein of potato virus X is a strainspecific elicitor of Rx1-mediated virus resistance in potato, Plant J., 8, 933–941.

    Article  CAS  PubMed  Google Scholar 

  129. Bendahmane, A., Farnham, G., Moffett, P., and Baulcombe, D. C. (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato, Plant J., 32, 195–204.

    Article  CAS  PubMed  Google Scholar 

  130. Lukasik, E., and Takken, F. L. (2009) STANDing strong, resistance proteins instigators of plant defense, Curr. Opin. Plant Biol., 12, 427–436.

    Article  CAS  PubMed  Google Scholar 

  131. Lu, R., Folimonov, A., Shintaku, M., Li, W. X., Falk, B. W., Dawson, W. O., and Ding, S. W. (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome, Proc. Natl. Acad. Sci. USA, 101, 15742–15747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Hu, X., Nie, X., He, C., and Xiong, X. (2011) Differential pathogenicity of two different recombinant PVY(NTN) isolates in Physalis floridana is likely determined by the coat protein gene, Virol. J., 7, 207.

    Article  Google Scholar 

  133. Hanssen, I. M., and Thomma, B. P. (2010) Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops, Mol. Plant Pathol., 11, 179–189.

    Article  CAS  PubMed  Google Scholar 

  134. Qiao, Y., Li, H. F., Wong, S. M., and Fan, Z. F. (2009) Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants, Mol. Plant Microbe Interact., 22, 1523–1534.

    Article  CAS  PubMed  Google Scholar 

  135. Carbonell, A., Maliogka, V. I., Perez, J. J., Salvador, B., Leon, D. S., Garcia, J. A., and Simon-Mateo, C. (2013) Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow plum pox virus to adapt to new hosts, Mol. Plant Microbe Interact., 26, 1211–1224.

    Article  CAS  PubMed  Google Scholar 

  136. Tian, Y. P., Liu, J. L., Zhang, C. L., Liu, Y. Y., Wang, B., Li, X. D., Guo, Z. K., and Valkonen, J. P. (2011) Genetic diversity of potato virus Y infecting tobacco crops in China, Phytopathology, 101, 377–387.

    Article  CAS  PubMed  Google Scholar 

  137. Fukumoto, T., Nakamura, M., Rikitake, M., and Iwai, H. (2012) Molecular characterization and specific detection of two genetically distinguishable strains of East Asian Passiflora virus (EAPV) and their distribution in southern Japan, Virus Genes, 44, 141–148.

    Article  CAS  PubMed  Google Scholar 

  138. Li, M., Li, P., Song, R., and Xu, Z. (2010) An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco, PLoS One, 5, e15087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Bendahmane, M., Koo, M., Karrer, E., and Beachy, R. N. (1999) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus–host interactions, J. Mol. Biol., 290, 9–20.

    Article  CAS  PubMed  Google Scholar 

  140. Dawson, W. O., Bubrick, P., and Grantham, G. L. (1988) Modifications of the tobacco mosaic virus coat protein gene affect replication, movement, and symptomatology, Phytopathology, 78, 783–789.

    Article  CAS  Google Scholar 

  141. Saito, T., Yamanaka, K., Watanabe, Y., Takamatsu, N., Meshi, T., and Okada, Y. (1989) Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N' gene, Virology, 173, 11–20.

    Article  CAS  PubMed  Google Scholar 

  142. Culver, J. N., Stubbs, G., and Dawson, W. O. (1994) Structure–function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris, J. Mol. Biol., 242, 130–138.

    Article  CAS  PubMed  Google Scholar 

  143. Shire, S. J., Steckert, J. J., and Schuster, T. M. (1979) Mechanism of self-assembly of tobacco mosaic virus protein. I. Nucleation-controlled kinetics of polymerization, J. Mol. Biol., 127, 487–506.

    Article  CAS  PubMed  Google Scholar 

  144. Teoh, P., Ooi, A. S., AbuBakar, S., and Othman, R. S. (2009) Virus-specific read-through codon preference affects infectivity of chimeric cucumber green mottle mosaic viruses displaying a dengue virus epitope, J. Biomed. Biotechnol., 2009, 781712.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Petukhova, N. V., Gasanova, T. V., Ivanov, P. A., and Atabekov, J. G. (2014) High-level systemic expression of conserved influenza epitope in plants on the surface of rod-shaped chimeric particles, Viruses, 6, 1789–1800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Hafren, A., Hofius, D., Ronnholm, G., Sonnewald, U., and Makinen, K. (2010) HSP70 and its co-chaperone CPIP promote potyviral infection in Nicotiana benthamiana by regulating viral coat protein functions, Plant Cell, 22, 523–535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Bornke, F., Maiss, E., and Sonnewald, U. (2007) Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants, J. Virol., 81, 11870–11880.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Besong-Ndika, J., Ivanov, K. I., Hafren, A., Michon, T., and Makinen, K. (2015) Cotranslational coat proteinmediated inhibition of potyviral RNA translation, J. Virol., 89, 4237–4248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., Susi, P., and Torrance, L. (2013) Status and prospects of plant virus control through interference with vector transmission, Annu. Rev. Phytopathol., 51, 177–201.

    Article  CAS  PubMed  Google Scholar 

  150. Ziegler-Graff, V., and Brault, V. (2008) Role of vectortransmission proteins, Methods Mol. Biol., 451, 81–96.

    Article  CAS  PubMed  Google Scholar 

  151. Blanc, S., Uzest, M., and Drucker, M. (2011) New research horizons in vector-transmission of plant viruses, Curr. Opin. Microbiol., 14, 483–491.

    Article  PubMed  Google Scholar 

  152. Ni, P., and Cheng Kao, C. (2013) Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses, Virology, 446, 123–132.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Kalinina.

Additional information

Original Russian Text © V. V. Makarov, N. O. Kalinina, 2016, published in Biokhimiya, 2016, Vol. 81, No. 1, pp. 35-55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, V.V., Kalinina, N.O. Structure and noncanonical activities of coat proteins of helical plant viruses. Biochemistry Moscow 81, 1–18 (2016). https://doi.org/10.1134/S0006297916010016

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916010016

Keywords

Navigation