Skip to main content
Log in

Circulating microRNAs

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The detection of miRNAs in plasma and other body fluids opened up a fascinating possibility that animal noncoding RNAs can act as extracellular signaling molecules. In this review, we discuss recent progress in the field including the ability of miRNAs to participate in intercellular communication in vitro and in vivo, and the application of circulating miRNAs as diagnostic markers of a wide range of diseases. Special attention is paid to the relevance of the development and unification of current techniques for isolation of circulating miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c-miRNAs:

circulating microRNAs

HDL:

high-density lipoproteins

RNP:

ribonucleoprotein

References

  1. Pasquinelli, A. E. (2012) MicroRNAs and their targets: recognition, regulation, and an emerging reciprocal relationship, Nat. Rev. Genet., 13, 271–282.

    CAS  PubMed  Google Scholar 

  2. Huntzinger, E., and Izaurralde, E. (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat. Rev. Genet., 12, 99–110.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Palanichamy, J. K., and Rao, D. S. (2014) miRNA dysregulation in cancer: towards a mechanistic understanding, Front. Genet., 5, 54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654–659.

    Article  CAS  PubMed  Google Scholar 

  6. Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., and Lo, Y. M. (2008) Detection and characterization of placental microRNAs in maternal plasma, Clin. Chem., 54, 482–490.

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O’ Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., and Tewari, M. (2008) Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. USA, 105, 10513–10518.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., Banham, A. H., Pezzella, F., Boultwood, J., Wainscoat, J. S., Hatton, C. S., and Harris, A. L. (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large Bcell lymphoma, Br. J. Haematol., 141, 672–675.

    Article  PubMed  Google Scholar 

  9. Kosaka, N., Izumi, H., Sekine, K., and Ochiya, T. (2010) microRNA as a new immune-regulatory agent in breast milk, Silence, 1, 7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Park, N. J., Zhou, H., Elashoff, D., Henson, B. S., Kastratovic, D. A., Abemayor, E., and Wong, D. T. (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection, Clin. Cancer Res., 15, 5473–5477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hanke, M., Hoefig, K., Merz, H., Feller, A. C., Kausch, I., Jocham, D., Warnecke, J. M., and Sczakiel, G. (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer, Urol. Oncol., 28, 655–661.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, C., Yang, C., Chen, X., Yao, B., Zhu, C., Li, L., Wang, J., Li, X., Shao, Y., Liu, Y., Ji, J., Zhang, J., Zen, K., Zhang, C. Y., and Zhang, C. (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility, Clin. Chem., 57, 1722–1731.

    Article  CAS  PubMed  Google Scholar 

  13. Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., Kelnar, K., Kemppainen, J., Brown, D., Chen, C., Prinjha, R. K., Richardson, J. C., Saunders, A. M., Roses, A. D., and Richards, C. A. (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways, J. Alzheimer’s Dis., 14, 27–41.

    CAS  Google Scholar 

  14. Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., Galas, D. J., and Wang, K. (2010) The microRNA spectrum in 12 body fluids, Clin. Chem., 56, 1733–1741.

    Article  CAS  PubMed  Google Scholar 

  15. Schwarzenbach, H., Nishida, N., Calin, G. A., and Pantel, K. (2014) Clinical relevance of circulating cell-free microRNAs in cancer, Nat. Rev. Clin. Oncol., 11, 145–156.

    Article  CAS  PubMed  Google Scholar 

  16. Sheinerman, K. S., Tsivinsky, V. G., and Umansky, S. R. (2013) Analysis of organ-enriched microRNAs in plasma as an approach to development of universal screening test: feasibility study, J. Transl. Med., 11, 304.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Finnegan, E. F., and Pasquinelli, A. E. (2013) MicroRNA biogenesis: regulating the regulators, Crit. Rev. Biochem. Mol. Biol., 48, 51–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 10, 1957–1966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 23, 4051–4060.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Winter, J., Jung, S., Keller, S., Gregory, R. I., and Diederichs, S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat. Cell Biol., 11, 228–234.

    Article  CAS  PubMed  Google Scholar 

  21. Borchert, G. M., Lanier, W., and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol., 13, 1097–1101.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V. N. (2003) The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  23. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 17, 3011–3016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Braun, J. E., Huntzinger, E., and Izaurralde, E. (2013) The role of GW182 proteins in miRNA-mediated gene silencing, Adv. Exp. Med. Biol., 768, 147–163.

    Article  CAS  PubMed  Google Scholar 

  25. Vasudevan, S., Tong, Y., and Steitz, J. A. (2007) Switching from repression to activation: microRNAs can up-regulate translation, Science, 318, 1931–1934.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D. H., Saetrom, P., Snove, O., Jr., and Rossi, J. J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells, Proc. Natl. Acad. Sci. USA, 105, 16230–16235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Forman, J. J., Legesse-Miller, A., and Coller, H. A. (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence, Proc. Natl. Acad. Sci. USA, 105, 14879–14884.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lee, I., Ajay, S. S., Yook, J. I., Kim, H. S., Hong, S. H., Kim, N. H., Dhanasekaran, S. M., Chinnaiyan, A. M., and Athey, B. D. (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites, Genome Res., 19, 1175–1183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′-UTR as in the 3′-UTR, Proc. Natl. Acad. Sci. USA, 104, 9667–9672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Basso, K., Sumazin, P., Morozov, P., Schneider, C., Maute, R. L., Kitagawa, Y., Mandelbaum, J., Haddad, J., Jr., Chen, C. Z., Califano, A., and Dalla-Favera, R. (2009) Identification of the human mature B cell miRNome, Immunity, 30, 744–752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Larsen, M. T., Hother, C., Hager, M., Pedersen, C. C., Theilgaard-Monch, K., Borregaard, N., and Cowland, J. B. (2013) MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation, PLoS One, 8, e58454.

    Article  CAS  Google Scholar 

  33. Polikepahad, S., and Corry, D. B. (2013) Profiling of Thelper cell-derived small RNAs reveals unique antisense transcripts and differential association of miRNAs with argonaute proteins 1 and 2, Nucleic Acids Res., 41, 1164–1177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M., and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 129, 1401–1414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223–7233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kubota, S., Chiba, M., Watanabe, M., Sakamoto, M., and Watanabe, N. (2015) Secretion of small/microRNAs including miR-638 into extracellular spaces by sphingomyelin phosphodiesterase 3, Oncol. Rep., 33, 67–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Gould, S. J., and Raposo, G. (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles, J. Extracell. Vesicles, 2; doi: 10.3402/jev.v2i0.20389.

  38. Raposo, G., and Stoorvogel, W. (2013) Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell Biol., 200, 373–383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Colombo, M., Raposo, G., and Thery, C. (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu. Rev. Cell Dev. Biol., 30, 255–289.

    Article  CAS  PubMed  Google Scholar 

  40. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases, Cell, 91, 457–466.

    Article  CAS  PubMed  Google Scholar 

  41. Akers, J. C., Gonda, D., Kim, R., Carter, B. S., and Chen, C. C. (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies, J. Neurooncol., 113, 1–11.

    Article  PubMed  Google Scholar 

  42. Gibbings, D. J., Ciaudo, C., Erhardt, M., and Voinnet, O. (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol., 11, 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  43. Boon, R. A., and Vickers, K. C. (2013) Intercellular transport of microRNAs, Arterioscler. Thromb. Vasc. Biol., 33, 186–192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., and Remaley, A. T. (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nat. Cell Biol., 13, 423–433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wang, K., Zhang, S., Weber, J., Baxter, D., and Galas, D. J. (2010) Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Res., 38, 7248–7259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kowal, J., Tkach, M., and Thery, C. (2014) Biogenesis and secretion of exosomes, Curr. Opin. Cell Biol., 29, 116–125.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, Y. S., Pressman, S., Andress, A. P., Kim, K., White, J. L., Cassidy, J. J., Li, X., Lubell, K., Lim do, H., Cho, I. S., Nakahara, K., Preall, J. B., Bellare, P., Sontheimer, E. J., and Carthew, R. W. (2009) Silencing by small RNAs is linked to endosomal trafficking, Nat. Cell Biol., 11, 1150–1156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, 319, 1244–1247.

    Article  CAS  PubMed  Google Scholar 

  50. Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., and Ochiya, T. (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells, J. Biol. Chem., 285, 17442–17452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., Gonzalez, S., Sanchez-Cabo, F., Gonzalez, M. A., Bernad, A., and Sanchez-Madrid, F. (2011) Unidirectional transfer of microRNA-loaded exosomes from T-cells to antigen-presenting cells, Nat. Commun., 2, 282.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Turchinovich, A., and Cho, W. C. (2014) The origin, function and diagnostic potential of extracellular microRNA in human body fluids, Front. Genet., 5, 30.

    PubMed  Google Scholar 

  53. Laterza, O. F., Lim, L., Garrett-Engele, P. W., Vlasakova, K., Muniappa, N., Tanaka, W. K., Johnson, J. M., Sina, J. F., Fare, T. L., Sistare, F. D., and Glaab, W. E. (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury, Clin. Chem., 55, 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  54. Corsten, M. F., Dennert, R., Jochems, S., Kuznetsova, T., Devaux, Y., Hofstra, L., Wagner, D. R., Staessen, J. A., Heymans, S., and Schroen, B. (2010) Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease, Circ. Cardiovasc. Genet., 3, 499–506.

    Article  PubMed  Google Scholar 

  55. Zhang, Y., Jia, Y., Zheng, R., Guo, Y., Wang, Y., Guo, H., Fei, M., and Sun, S. (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases, Clin. Chem., 56, 1830–1838.

    Article  CAS  PubMed  Google Scholar 

  56. Akat, K. M., Moore-McGriff, D., Morozov, P., Brown, M., Gogakos, T., Correa Da Rosa, J., Mihailovic, A., Sauer, M., Ji, R., Ramarathnam, A., Totary-Jain, H., Williams, Z., Tuschl, T., and Schulze, P. C. (2014) Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers, Proc. Natl. Acad. Sci. USA, 111, 11151–11156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Turchinovich, A., Weiz, L., and Burwinkel, B. (2012) Extracellular miRNAs: the mystery of their origin and function, Trends Biochem. Sci., 37, 460–465.

    Article  CAS  PubMed  Google Scholar 

  58. Banzet, S., Chennaoui, M., Girard, O., Racinais, S., Drogou, C., Chalabi, H., and Koulmann, N. (2013) Changes in circulating microRNAs levels with exercise modality, J. Appl. Physiol. (1985), 115, 1237–1244.

    Article  CAS  Google Scholar 

  59. Uhlemann, M., Mobius-Winkler, S., Fikenzer, S., Adam, J., Redlich, M., Mohlenkamp, S., Hilberg, T., Schuler, G. C., and Adams, V. (2012) Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults, Eur. J. Prev. Cardiol., 21, 484–491.

    Article  PubMed  Google Scholar 

  60. Hannafon, B. N., and Ding, W. Q. (2013) Intercellular communication by exosome-derived microRNAs in cancer, Int. J. Mol. Sci., 14, 14240–14269.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Turchinovich, A., Samatov, T. R., Tonevitsky, A. G., and Burwinkel, B. (2013) Circulating miRNAs: cell–cell communication function? Front. Genet., 4, 119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Salido-Guadarrama, I., Romero-Cordoba, S., Peralta Zaragoza, O., Hidalgo-Miranda, A., and Rodriguez-Dorantes, M. (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer, Onco Targets Ther., 7, 1327–1338.

    PubMed Central  PubMed  Google Scholar 

  63. Saleem, S. N., and Abdel-Mageed, A. B. (2014) Tumorderived exosomes in oncogenic reprogramming and cancer progression, Cell. Mol. Life Sci., 72, 1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tabet, F., Vickers, K. C., Cuesta Torres, L. F., Wiese, C. B., Shoucri, B. M., Lambert, G., Catherinet, C., Prado-Lourenco, L., Levin, M. G., Thacker, S., Sethupathy, P., Barter, P. J., Remaley, A. T., and Rye, K. A. (2014) HDLtransferred microRNA-223 regulates ICAM-1 expression in endothelial cells, Nat. Commun., 5, 3292.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., Cheng, H. H., Arroyo, J. D., Meredith, E. K., Gallichotte, E. N., Pogosova Agadjanyan, E. L., Morrissey, C., Stirewalt, D. L., Hladik, F., Yu, E. Y., Higano, C. S., and Tewari, M. (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes, Proc. Natl. Acad. Sci. USA, 111, 14888–14893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kogure, T., Lin, W. L., Yan, I. K., Braconi, C., and Patel, T. (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth, Hepatology, 54, 1237–1248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Nolte-’t Hoen, E. N., Buermans, H. P., Waasdorp, M., Stoorvogel, W., Wauben, M. H., and’ t Hoen, P. A. (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions, Nucleic Acids Res., 40, 9272–9285.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Li, C. C., Eaton, S. A., Young, P. E., Lee, M., Shuttleworth, R., Humphreys, D. T., Grau, G. E., Combes, V., Bebawy, M., Gong, J., Brammah, S., Buckland, M. E., and Suter, C. M. (2013) Glioma microvesicles carry selectively packaged coding and noncoding RNAs which alter gene expression in recipient cells, RNA Biol., 10, 1333–1344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Guduric-Fuchs, J., O’Connor, A., Camp, B., O’ Neill, C. L., Medina, R. J., and Simpson, D. A. (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types, BMC Genomics, 13, 357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Koppers-Lalic, D., Hackenberg, M., Bijnsdorp, I. V., van Eijndhoven, M. A., Sadek, P., Sie, D., Zini, N., Middeldorp, J. M., Ylstra, B., de Menezes, R. X., Wurdinger, T., Meijer, G. A., and Pegtel, D. M. (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes, Cell Rep., 8, 1649–1658.

    Article  CAS  PubMed  Google Scholar 

  71. Ji, H., Chen, M., Greening, D. W., He, W., Rai, A., Zhang, W., and Simpson, R. J. (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures, PLoS One, 9, e110314.

    Article  CAS  Google Scholar 

  72. Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin Cofreces, N., Martinez-Herrera, D. J., Pascual-Montano, A., Mittelbrunn, M., and Sanchez-Madrid, F. (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs, Nat. Commun., 4, 2980.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., and Dimmeler, S. (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs, Nat. Cell Biol., 14, 249–256.

    Article  CAS  PubMed  Google Scholar 

  74. Le, M. T., Hamar, P., Guo, C., Basar, E., Perdigao Henriques, R., Balaj, L., and Lieberman, J. (2014) miR200-containing extracellular vesicles promote breast cancer cell metastasis, J. Clin. Invest., 124, 5109–5128.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., and Croce, C. M. (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response, Proc. Natl. Acad. Sci. USA, 109, 2110–2116.

    Article  Google Scholar 

  76. Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kalin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., and Lehnardt, S. (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration, Nat. Neurosci., 15, 827–835.

    Article  CAS  PubMed  Google Scholar 

  77. Saikumar, J., Ramachandran, K., and Vaidya, V. S. (2014) Noninvasive micromarkers, Clin. Chem., 60, 1158–1173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lagana, A., Russo, F., Veneziano, D., Bella, S. D., Giugno, R., Pulvirenti, A., Croce, C. M., and Ferro, A. (2013) Extracellular circulating viral microRNAs: current knowledge and perspectives, Front. Genet., 4, 120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Makarova, J. A., Maltseva, D. V., Galatenko, V. V., Abbasi, A., Maximenko, D. G., Grigoriev, A. I., Tonevitsky, A. G., and Northoff, H. (2014) Exercise immunology meets miRNAs, Exerc. Immunol. Rev., 20, 135–164.

    PubMed  Google Scholar 

  80. Hoy, A. M., Lundie, R. J., Ivens, A., Quintana, J. F., Nausch, N., Forster, T., Jones, F., Kabatereine, N. B., Dunne, D. W., Mutapi, F., Macdonald, A. S., and Buck, A. H. (2014) Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection, PLoS Negl. Trop. Dis., 8, e2701.

    Article  CAS  Google Scholar 

  81. Sato-Kuwabara, Y., Melo, S. A., Soares, F. A., and Calin, G. A. (2015) The fusion of two worlds: non-coding RNAs and extracellular vesicles — diagnostic and therapeutic implications (review), Int. J. Oncol., 46, 17–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Eichelser, C., Stuckrath, I., Muller, V., Milde-Langosch, K., Wikman, H., Pantel, K., and Schwarzenbach, H. (2014) Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients, Oncotarget, 5, 9650–9663.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Bala, S., Petrasek, J., Mundkur, S., Catalano, D., Levin, I., Ward, J., Alao, H., Kodys, K., and Szabo, G. (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases, Hepatology, 56, 1946–1957.

    CAS  PubMed  Google Scholar 

  84. Taguchi, Y. H., and Murakami, Y. (2014) Universal disease biomarker: can a fixed set of blood microRNAs diagnose multiple diseases? BMC Res. Notes, 7, 581.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Taguchi, Y. H., and Murakami, Y. (2013) Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers, PLoS One, 8, e66714.

    Article  CAS  Google Scholar 

  86. Keller, A., Leidinger, P., Vogel, B., Backes, C., El Sharawy, A., Galata, V., Muller, S. C., Marquart, S., Schrauder, M. G., Strick, R., Bauer, A., Wischhusen, J., Beier, M., Kohlhaas, J., Katus, H. A., Hoheisel, J., Franke, A., Meder, B., and Meese, E. (2014) miRNAs can be generally associated with human pathologies as exemplified for miR-144, BMC Med., 12, 224.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Ple, H., Landry, P., Benham, A., Coarfa, C., Gunaratne, P. H., and Provost, P. (2012) The repertoire and features of human platelet microRNAs, PLoS One, 7, e50746.

    Article  CAS  Google Scholar 

  88. Stakos, D. A., Gatsiou, A., Stamatelopoulos, K., Tselepis, A. D., and Stellos, K. (2013) Platelet microRNAs: from platelet biology to possible disease biomarkers and therapeutic targets, Platelets, 24, 579–589.

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, H. H., Yi, H. S., Kim, Y., Kroh, E. M., Chien, J. W., Eaton, K. D., Goodman, M. T., Tait, J. F., Tewari, M., and Pritchard, C. C. (2013) Plasma processing conditions substantially influence circulating microRNA biomarker levels, PLoS One, 8, e64795.

    Article  CAS  Google Scholar 

  90. Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O., and Hendrix, A. (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling, J. Extracell. Vesicles, 18, 3.

  91. Monleau, M., Bonnel, S., Gostan, T., Blanchard, D., Courgnaud, V., and Lecellier, C. H. (2014) Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells, BMC Genomics, 15, 395.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Kim, D. J., Linnstaedt, S., Palma, J., Park, J. C., Ntrivalas, E., Kwak-Kim, J. Y., Gilman-Sachs, A., Beaman, K., Hastings, M. L., Martin, J. N., and Duelli, D. M. (2012) Plasma components affect accuracy of circulating cancerrelated microRNA quantitation, J. Mol. Diagn., 14, 71–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Page, K., Guttery, D. S., Zahra, N., Primrose, L., Elshaw, S. R., Pringle, J. H., Blighe, K., Marchese, S. D., Hills, A., Woodley, L., Stebbing, J., Coombes, R. C., and Shaw, J. A. (2013) Influence of plasma processing on recovery and analysis of circulating nucleic acids, PLoS One, 8, e77963.

    Article  CAS  Google Scholar 

  94. Koberle, V., Pleli, T., Schmithals, C., Augusto Alonso, E., Haupenthal, J., Bonig, H., Peveling-Oberhag, J., Biondi, R. M., Zeuzem, S., Kronenberger, B., Waidmann, O., and Piiper, A. (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers, PLoS One, 8, e75184.

    Article  CAS  Google Scholar 

  95. Becker, N., and Lockwood, C. M. (2013) Pre-analytical variables in miRNA analysis, Clin. Biochem., 46, 861–868.

    Article  CAS  PubMed  Google Scholar 

  96. Pritchard, C. C., Kroh, E., Wood, B., Arroyo, J. D., Dougherty, K. J., Miyaji, M. M., Tait, J. F., and Tewari, M. (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies, Cancer Prev. Res. (Philadelphia), 5, 492–497.

    Article  CAS  Google Scholar 

  97. Adams, S. V., Newcomb, P. A., Burnett-Hartman, A. N., Wurscher, M. A., Mandelson, M., Upton, M. P., Zhu, L. C., Potter, J. D., and Makar, K. W. (2014) Rare circulating microRNAs as biomarkers of colorectal neoplasia, PLoS One, 9, e108668.

    Article  CAS  Google Scholar 

  98. Wang, K., Yuan, Y., Cho, J. H., Mc Clarty, S., Baxter, D., and Galas, D. J. (2012) Comparing the microRNA spectrum between serum and plasma, PLoS One, 7, e41561.

    Article  CAS  Google Scholar 

  99. Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., and Du, X. (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer, Int. J. Cancer, 127, 118–126.

    Article  CAS  PubMed  Google Scholar 

  100. Giraldez, M. D., Lozano, J. J., Ramirez, G., Hijona, E., Bujanda, L., Castells, A., and Gironella, M. (2013) Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide profiling and validation study, Clin. Gastroenterol. Hepatol., 11, 681–688.

    Article  CAS  PubMed  Google Scholar 

  101. Kanaan, Z., Roberts, H., Eichenberger, M. R., Billeter, A., Ocheretner, G., Pan, J., Rai, S. N., Jorden, J., Williford, A., and Galandiuk, S. (2013) A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer, Ann. Surg., 258, 400–408.

    Article  PubMed  Google Scholar 

  102. Wang, Q., Huang, Z., Ni, S., Xiao, X., Xu, Q., Wang, L., Huang, D., Tan, C., Sheng, W., and Du, X. (2012) Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer, PLoS One, 7, e44398.

    Article  CAS  Google Scholar 

  103. Toiyama, Y., Takahashi, M., Hur, K., Nagasaka, T., Tanaka, K., Inoue, Y., Kusunoki, M., Boland, C. R., and Goel, A. (2013) Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer, J. Natl. Cancer Inst., 105, 849–859.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Farina, N. H., Wood, M. E., Perrapato, S. D., Francklyn, C. S., Stein, G. S., Stein, J. L., and Lian, J. B. (2014) Standardizing analysis of circulating microRNA: clinical and biological relevance, J. Cell. Biochem., 115, 805–811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Moret, I., Sanchez-Izquierdo, D., Iborra, M., Tortosa, L., Navarro-Puche, A., Nos, P., Cervera, J., and Beltran, B. (2013) Assessing an improved protocol for plasma microRNA extraction, PLoS One, 8, e82753.

    Article  CAS  Google Scholar 

  106. Witwer, K. W., Buzas, E. I., Bemis, L. T., Bora, A., Lasser, C., Lotvall, J., Nolte-’t Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Thery, C., Wauben, M. H., and Hochberg, F. (2013) Standardization of sample collection, isolation, and analysis methods in extracellular vesicle research, J. Extracell. Vesicles, 2.

  107. Kanwar, S. S., Dunlay, C. J., Simeone, D. M., and Nagrath, S. (2014) Microfluidic device (ExoChip) for onchip isolation, quantification, and characterization of circulating exosomes, Lab. Chip, 14, 1891–1900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Makarova.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 9, pp. 1344–1355.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, J.A., Shkurnikov, M.U., Turchinovich, A.A. et al. Circulating microRNAs. Biochemistry Moscow 80, 1117–1126 (2015). https://doi.org/10.1134/S0006297915090035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915090035

Key words

Navigation