Skip to main content
Log in

What controls the expression of the core-1 (Thomsen—Friedenreich) glycotope on tumor cells?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Malignant transformation is tightly connected with changes in the glycosylation of proteins and lipids, which in turn are contributing to the invasive and metastatic behavior of tumor cells. One example of such changes is demasking of the otherwise hidden core-1 structure, also known as Thomsen–Friedenreich antigen, which is a highly tumor-specific glycotope and potentially a cancer stem cell marker. This review summarizes what is known about the mechanism(s) of its expression on tumor cells. New data reveal a close connection between tumor metabolism and Golgi function. Based on these data, we suggest that the expression of this antigen is also a marker of aerobic glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TF:

Thomsen—Friedenreich antigen

V-ATPase:

vacuolar H+-ATPase

References

  1. Friedenreich, V. (1930) The Thomsen Hemagglutination Phenomenon, Levin & Munksgaard, Copenhagen.

  2. Kim, Z., and Uhlenbruck, G. (1966) Untersuchungen uber T-antigen und T-agglutinin, Z. Immun. Forsch., 130, 8899.

    Google Scholar 

  3. Springer, G. F., Desai, P. R., and Banatwala, I. (1975) Blood group MN antigens and precursors in normal and malignant human breast glandular tissue, J. Natl. Cancer Inst., 54, 335–339.

    CAS  PubMed  Google Scholar 

  4. Springer, G. F. (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J. Mol. Med., 75, 594–602.

    Article  CAS  PubMed  Google Scholar 

  5. Springer, G. F. (1984) T and Tn, general carcinoma autoantigens, Science, 228, 1198–1206.

    Article  Google Scholar 

  6. Cao, Y., Stosiek, P., Springer, G. F., and Karsten, U. (1996) Thomsen–Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study, Histochem. Cell Biol., 106, 197–207.

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Y., Karsten, U., Liebrich, W., Haensch, W., Springer, G. F., and Schlag, P. M. (1995) Expression of Thomsen–Friedenreich-related antigens in primary and metastatic colorectal carcinomas: a reevaluation, Cancer, 76, 1700–1708.

    Article  CAS  PubMed  Google Scholar 

  8. Takanami, I. (1999) Expression of Thomsen–Friedenreich antigen as a marker of poor prognosis in pulmonary adenocarcinoma, Oncol. Rep., 6, 341–344.

    CAS  PubMed  Google Scholar 

  9. Baldus, S. E., Hanisch, F. G., Monaca, E., Karsten, U., Zirbes, T. K., Thiele, J., and Dienes, H. P. (1999) Immunoreactivity of Thomsen–Friedenreich (TF) antigen in human neoplasms: the importance of carrier-specific glycotope expression on MUC1, Histol. Histopathol., 14, 1153–1158.

    CAS  PubMed  Google Scholar 

  10. Cao, Y., Karsten, U., Otto, G., and Bannasch, P. (1999) Expression of MUC1, Thomsen–Friedenreich antigen, Tn, sialosyl-Tn, and a2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions, Virchows Arch., 434, 503–509.

    Article  CAS  PubMed  Google Scholar 

  11. Veerman, A. J. P., Hogeman, P. H. G., Huismans, D. R., Van Zantwijk, C. H., and Bezemer, P. D. (1985) Peanut agglutinin, a marker for T-cell acute lymphoblastic leukemia with a good prognosis, Cancer Res., 45, 1890–1893.

    CAS  PubMed  Google Scholar 

  12. Karsten, U. (2002) CD176 workshop panel report, in Leucocyte Typing VII (Mason, D., ed.) Oxford University Press, Oxford, pp. 202–203.

    Google Scholar 

  13. Karsten, U., and Goletz, S. (2013) What makes cancer stem cell markers different? Springer Plus, 2, 301.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Brockhausen, I., Yang, J., Burchell, J., Whitehouse, C., and Taylor-Papadimitriou, J. (1995) Mechanism underlying aberrant glycosylation of the MUC1 mucin in breast cancer, Eur. J. Biochem., 233, 607–617.

    Article  CAS  PubMed  Google Scholar 

  15. Ermini, L., Bhattacharjee, J., Spagnoletti, A., Bechi, N., Aldi, S., Ferretti, C., Bianchi, L., Bini, L., Rosati, F., Paulesu, L., and Ietta, F. (2013) Oxygen governs Galß13GalNAc epitope in human placenta, Am. J. Physiol. Cell Physiol., 305, C931–C940.

    Google Scholar 

  16. Brockhausen, I. (1999) Pathways of O-glycan biosynthesis in cancer cells, Biochim. Biophys. Acta, 1473, 67–95.

    Article  CAS  PubMed  Google Scholar 

  17. Brockhausen, I. (2006) Mucin-type O-glycosylation in human colon and breast cancer: glycodynamics and functions, EMBO Rep., 7, 599–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Goletz, S., Cao, Y., Danielczyk, A., Ravn, P., Schoeber, U., and Karsten, U. (2003) Thomsen–Friedenreich antigen: the “hidden” tumor antigen, Adv. Exp. Med. Biol., 535, 147–162.

    Article  CAS  PubMed  Google Scholar 

  19. Burchell, J. M., Mungul, A., and Taylor-Papadimitriou, J. (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy, J. Mamm. Gland Biol. Neoplasm, 6, 355–364.

    Article  CAS  Google Scholar 

  20. Vavasseur, F., Yang, J., Dole, K., Paulsen, H., and Brockhausen, I. (1995) Synthesis of core 3: characterization of UDP-GlcNAc: GalNAc ß3-N-acetylglucosaminyltransferase activity from colonic tissues. Loss of the activity in human cancer cell lines, Glycobiology, 5, 351–357.

    Article  CAS  PubMed  Google Scholar 

  21. Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., and Schlag, P. M. (2001) Overexpression of sialyltransferase CMP-sialic acid:Galß1,3GalNAc-R a6-sialyltransferase is related to poor patient survival in human colorectal carcinomas, Cancer Res., 61, 4605–4611.

    CAS  PubMed  Google Scholar 

  22. Dalziel, M., Whitehouse, C., McFarlane, I., Brockhausen, I., Gschmeissner, S., Schwientek, T., Clausen, H., Burchell, J. M., and Taylor-Papadimitriou, J. (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1, J. Biol. Chem., 276, 11007–11015.

    Article  CAS  PubMed  Google Scholar 

  23. Gill, D. J., Tham, K. M., Chia, J., Wang, S. C., Steentoft, C., Clausen, H., Bard-Chapeau, E. A., and Bard, F. A. (2013) Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness, Proc. Natl. Acad. Sci. USA, 110, E3152–E3162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Radhakrishnan, P., Dabelsteen, S., Madsen, F. B., Francavilla, C., Kopp, K. L., Steentoft, C., Vakhrushev, S. Y., Olsen, J. V., Hansen, L., Bennett, E. P., Woetmann, A., Yin, G., Chen, L., Song, H., Bak, M., Hlady, R. A., Peters, S. L., Opavsky, R., Thode, C., Qvortrup, K., Schjoldager, K. T. -B. G., Clausen, H., Hollingsworth, M. A., and Wandall, H. H. (2014) Immature truncated O-glycophenotype of cancer directly induces oncogenic features, Proc. Natl. Acad. Sci. USA, 111, E4066–E4075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ju, T., Otto, V. I., and Cummings, R. D. (2011) The Tn antigen–structural simplicity and biological complexity, Angew. Chem. Int. Ed., 50, 1770–1791.

    Article  CAS  Google Scholar 

  26. Kumamoto, K., Goto, Y., Sekikawa, K., Takenoshita, S., Ishida, N., Kawakita, M., and Kannagi, R. (2001) Increased expression of UDP-galactose transporter RNA in human colon cancer tissues and its implication in synthesis of Thomsen–Friedenreich antigen and sialyl Lewis A/X determinants, Cancer Res., 61, 4620–4627.

    CAS  PubMed  Google Scholar 

  27. Nilsson, T., Slusarewicz, P., Hoe, M. H., and Warren, G. (1993) Kin recognition. A model for the retention of Golgi enzymes, FEBS Lett., 330, 1–4.

    Article  CAS  PubMed  Google Scholar 

  28. De Graffenried, C. L., and Bertozzi, C. R. (2004) The roles of enzyme localization and complex formation of Golgi enzymes, Curr. Opin. Cell Biol., 16, 356–363.

    Article  CAS  PubMed  Google Scholar 

  29. Engelsberg, A., Hermosilla, R., Karsten, U., Schulein, R., Dorken, B., and Rehm, A. (2003) The Golgi protein RCAS1 controls cell surface expression of tumor-associated O-linked glycan antigens, J. Biol. Chem., 278, 22998–23007.

    Article  CAS  PubMed  Google Scholar 

  30. Egea, G., Franci, C., Gambus, G., Lesuffleur, T., Zweibaum, A., and Real, F. X. (1993) Cis-Golgi resident proteins and O-glycans are abnormally compartmentalized in the RER of colon cancer cells, J. Cell Sci., 105, 819–830.

    CAS  PubMed  Google Scholar 

  31. Sewell, R., Backstrom, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gatgens, J., Clausen, H., Hansson, G. C., Burchell, J., and Taylor-Papadimitriou, J. (2006) The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumorassociated sialyl-Tn-glycan in human breast cancer, J. Biol. Chem., 281, 3586–3594.

    Article  CAS  PubMed  Google Scholar 

  32. Rottger, S., White, J., Wandall, H. H., Olivo, J.-C., Stark, A., Bennett, E. P., Whitehouse, C., Berger, E. G., Clausen, H., and Nilsson, T. (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus, J. Cell Sci., 111, 45–60.

    CAS  PubMed  Google Scholar 

  33. Axelsson, M. A. B., Karlsson, N. G., Steel, D. M., Ouwendijk, J., Nilsson, T., and Hansson, G. C. (2001) Neutralization of pH in the Golgi apparatus cause redistribution of glycosyltransferases and changes in the O-glycosylation of mucins, Glycobiology, 11, 633–644.

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, B. J., Rowe, G. E., Leiper, K., and Rhodes, J. M. (2001) Increasing the intra-Golgi pH of cultured LS174T goblet-differentiated cells mimics the decreased mucin sulfation and increased Thomsen–Friedenreich antigen (Galß1-3GalNaca-) expression seen in colon cancer, Glycobiology, 11, 385–393.

    Article  CAS  PubMed  Google Scholar 

  35. Thorens, B., and Vassalli, P. (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion, Nature, 321, 618–620.

    Article  CAS  PubMed  Google Scholar 

  36. Caplan, M. J., Stow, J. L., Newman, A. P., Madri, J., Anderson, H. C., Farquhar, M. G., Palade, G. E., and Jamieson, J. D. (1987) Dependence on pH of polarized sorting of secreted proteins, Nature, 329, 632–635.

    Article  CAS  PubMed  Google Scholar 

  37. Kellokumpu, S., Sormunen, R., and Kellokumpu, I. (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH, FEBS Lett., 516, 217–224.

    Article  CAS  PubMed  Google Scholar 

  38. Paroutis, P., Touret, N., and Grinstein, S. (2004) The pH of the secretory pathway: measurement, determinants, and regulation, Physiology, 19, 207–215.

    Article  CAS  PubMed  Google Scholar 

  39. Rivinoja, A., Kokkonen, N., Kellokumpu, I., and Kellokumpu, S. (2006) Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen, J. Cell. Physiol., 208, 167–174.

    Article  CAS  PubMed  Google Scholar 

  40. Gawlitzek, M., Ryll, T., Lofgren, J., and Sliwkowski, M. B. (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms, Biotechnol. Bioeng., 68, 637–646.

    Article  CAS  PubMed  Google Scholar 

  41. Rivinoja, A., Hassinen, A., Kokkonen, N., Kauppila, A., and Kellokumpu, S. (2009) Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases, J. Cell. Physiol., 220, 144–154.

    Article  CAS  PubMed  Google Scholar 

  42. Hassinen, A., Pujol, F. M., Kokkonen, N., Pieters, C., Kihlstrom, M., Korhonen, K., and Kellokumpu, S. (2011) Functional organization of the Golgi Nand O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells, J. Biol. Chem., 286, 38329–38340.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hassinen, A., and Kellokumpu, S. (2014) Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homoand heteromers, J. Biol. Chem., 289, 26937–26948.

    Article  CAS  PubMed  Google Scholar 

  44. Rivinoja, A., Pujol, F. M., Hassinen, A., and Kellokumpu, S. (2012) Golgi pH, its regulation and roles in human disease, Ann. Med., 44, 542–554.

    Article  CAS  PubMed  Google Scholar 

  45. Maeda, Y., Ide, T., Koike, M., Uchiyama, Y., and Kinoshita, T. (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus, Nature Cell Biol., 10, 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  46. Marshansky, V., Rubinstein, J. L., and Gruber, G. (2014) Eukaryotic V-ATPase: novel structural findings and functional insights, Biochim. Biophys. Acta, 1837, 857–879.

    Article  CAS  PubMed  Google Scholar 

  47. Warburg, O., Wind, F., and Negelein, E. (1927) The metabolism of tumors in the body, J. Gen. Physiol., 8, 519–530.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  49. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 7, 11–20.

    Article  CAS  PubMed  Google Scholar 

  50. Gillies, R. J., Raghunand, N., Karczmar, G. S., and Bhujwalla, Z. M. (2002) MRI of the tumor microenvironment, J. Magn. Reson. Imag., 16, 430–450.

    Article  Google Scholar 

  51. Damaghi, M., Wojtkowiak, J. W., and Gillies, R. J. (2013) pH sensing and regulation in cancer, Front. Physiol., 4; http://dx.doi.org/10.3389/fphys.2013.00370.

  52. Gatenby, R. A., Smallbone, K., Maini, P. K., Rose, F., Averill, J., Nagle, R. B., Worrall, L., and Gillies, R. J. (2007) Cellular adaptions to hypoxia and acidosis during somatic evolution of breast cancer, Brit. J. Cancer, 97, 646–653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Vogelstein, B., and Kinzler, K. W. (2004) Cancer genes and the pathways they control, Nature Med., 10, 789–799.

    Article  CAS  PubMed  Google Scholar 

  54. Kroemer, G., and Pouyssegur, J. (2008) Tumor cell metabolism: cancer’s Achilles heel, Cancer Cell, 13, 472–482.

    Article  CAS  PubMed  Google Scholar 

  55. Cardone, R. A., Casavola, V., and Reshkin, S. J. (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis, Nature Rev. Cancer, 5, 786–795.

    Article  CAS  Google Scholar 

  56. Wong, N., De Melo, J., and Tang, D. (2013) PKM2, a central point of regulation in cancer metabolism, Int. J. Cell Biol.; http://dx.doi.org/10.1155/2013/242513.

  57. Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations, J. Clin. Invest., 123, 3665–3671.

    Article  Google Scholar 

  58. Soonthornsit, J., Yamaguchi, Y., Tamura, D., Ishida, R., Nakakoji, Y., Osako, S., Yamamoto, A., and Nakamura, N. (2014) Low cytoplasmic pH reduces ER–Golgi trafficking and induces disassembly of the Golgi apparatus, Exp. Cell Res., 328, 325–339.

    Article  CAS  PubMed  Google Scholar 

  59. Finley, L. W. S., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P., and Haigis, M. C. (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIFa destabilization, Cancer Cell, 19, 416–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R., and Grinstein, S. (2000) Golgi alkalinization by the papillomavirus E5 oncoprotein, J. Cell Biol., 148, 305–315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sautin, Y. Y., Lu, M., Gaugler, A., Zhang, L., and Gluck, S. L. (2005) Phosphatidylinositol 3-kianse-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells, Mol. Cell. Biol., 25, 575–589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Jeschke, U., Richter, D. U., Hammer, A., Briese, V., Friese, K., and Karsten, U. (2002) Expression of the Thomsen–Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro, Histochem. Cell Biol., 117, 219–226.

    Article  CAS  PubMed  Google Scholar 

  63. Ito, K., and Suda, T. (2014) Metabolic requirements for the maintenance of self-renewing stem cells, Nature Rev. Mol. Cell Biol., 15, 243–256.

    Article  CAS  Google Scholar 

  64. Martinez-Outschoorn, U. E., Lisanti, M. P., and Sotgia, F. (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth, Seminars Cancer Biol., 25, 47–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Karsten or S. Goletz.

Additional information

To whom correspondence should be addressed.

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 7, pp. 959–966.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsten, U., Goletz, S. What controls the expression of the core-1 (Thomsen—Friedenreich) glycotope on tumor cells?. Biochemistry Moscow 80, 801–807 (2015). https://doi.org/10.1134/S0006297915070019

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915070019

Keywords

Navigation