Skip to main content
Log in

Novel mitochondrial cationic uncoupler C4R1 is an effective treatment for combating obesity in mice

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Obesity is associated with premature mortality, impaired quality of life, and large healthcare costs. However, treatment options remain quite limited. Here we studied potential anti-obesity effects of a novel cationic mitochondrial uncoupler, C4R1 (derivative of rhodamine 19) in C57Bl/6 mice. Obesity was induced by long-term (eight weeks) high fat diet feeding at thermoneutrality. The treated group of mice received consecutively two doses of C4R1 in drinking water (30 and 12–14 μmol/kg daily) during 30 days. Effects of C4R1 were dose-dependent. After six days of C4R1 treatment at dose 30 μmol/kg daily, food intake was reduced by 68%, body weight by 19%, and fat mass by 21%. Body weight decrease was explained partly by reduced food intake and partly by increased metabolism, likely resulting from uncoupling. Body fat reduction upon C4R1 treatment was associated with improved lipid utilization estimated from decrease in respiratory quotient to the minimal level (0.7). Interestingly, the classical uncoupler 2,4-dinitrophenol at similar dose (27 μmol/kg daily) did not have any effect. Our results are relevant to the search for substances causing mild uncoupling of mitochondria that could be a promising therapeutic strategy to treat obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C4R1:

a short-chain alkyl derivative of rhodamine 19

DNP:

2,4-dinitrophenol

MRI:

magnetic resonance imaging

RMR:

resting metabolic rate

RQ:

respiratory quotient

UCP1:

uncoupling protein 1

References

  1. Tseng, Y. H., Cypess, A. M., and Kahn, C. R. (2010) Cellular bioenergetics as a target for obesity therapy, Nature Rev. Drug Discov., 9, 465–482.

    Article  CAS  Google Scholar 

  2. Rodgers, R. J., Tschop, M. H., and Wilding, J. P. (2012) Anti-obesity drugs: past, present and future, Dis. Model Mech., 5, 621–626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wadden, T. A. (1993) Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials, Ann. Intern. Med., 119, 688–693.

    Article  CAS  PubMed  Google Scholar 

  4. Harper, J. A., Dickinson, K., and Brand, M. D. (2001) Mitochondrial uncoupling as a target for drug development for the treatment of obesity, Obes. Rev., 2, 255–265.

    Article  CAS  PubMed  Google Scholar 

  5. Nedergaard, J., and Cannon, B. (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions, Cell Metab., 11, 268–272.

    Article  CAS  PubMed  Google Scholar 

  6. Tainter, M. L., Cutting, W. C., and Stockton, A. B. (1934) Use of dinitrophenol in nutritional disorders: a critical survey of clinical results, Am. J. Public Health Nations Health, 24, 1045–1053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Parascandola, J. (1974) Dinitrophenol and bioenergetics: an historical perspective, Mol. Cell Biochem., 5, 69–77.

    Article  CAS  PubMed  Google Scholar 

  8. Shemano, I., and Nickerson, M. (1963) Mechanisms of thermal responses to 2,4-dinitrophenol, J. Pharmacol. Exp. Ther., 139, 88–93.

    CAS  PubMed  Google Scholar 

  9. Schlagowski, A. I., Singh, F., Charles, A. L., Gali Ramamoorthy, T., Favret, F., Piquard, F., Geny, B., and Zoll, J. (2014) Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations, J. Appl. Physiol. (1985), 116, 364–375.

    Article  Google Scholar 

  10. Goldgof, M., Xiao, C., Chanturiya, T., Jou, W., Gavrilova, O., and Reitman, M. L. (2014) The chemical uncoupler 2,4-dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality, J. Biol. Chem., 289, 19341–19350.

    Article  CAS  PubMed  Google Scholar 

  11. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.

    Article  CAS  PubMed  Google Scholar 

  12. Quin, C., Robertson, L., McQuaker, S. J., Price, N. C., Brand, M. D., and Hartley, R. C. (2010) Caged mitochondrial uncouplers that are released in response to hydrogen peroxide, Tetrahedron, 66, 2384–2389.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shabalina, I. G., and Nedergaard, J. (2011) Mitochondrial (“mild”) uncoupling and ROS production: physiologically relevant or not, Biochem. Soc. Trans., 39, 1305–1309.

    Article  CAS  PubMed  Google Scholar 

  14. Hatcher, A. S., Alderson, J. M., and Clements-Jewery, H. (2011) Cardiac mitochondrial uncoupling agents trigger ventricular fibrillation in isolated rat hearts, J. Cardiovasc. Pharmacol., 28, 28.

    Google Scholar 

  15. McFee, R. B., Caraccio, T. R., McGuigan, M. A., Reynolds, S. A., and Bellanger, P. (2004) Dying to be thin: a dinitrophenol related fatality, Vet. Hum. Toxicol., 46, 251–254.

    CAS  PubMed  Google Scholar 

  16. Grundlingh, J., Dargan, P. I., El-Zanfaly, M., and Wood, D. M. (2011) 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol., 7, 205–212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Trendeleva, T. A., Sukhanova, E. I., Rogov, A. G., Zvyagilskaya, R. A., Seveina, I. I., Ilyasova, T. M., Cherepanov, D. A., and Skulachev, V. P. (2013) Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes, Mitochondrion, 13, 500–506.

    Article  CAS  PubMed  Google Scholar 

  19. Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Khailova, L. S., Silachev, D. N., Rokitskaya, T. I., Avetisyan, A. V., Lyamsaev, K. G., Severina, I. I., Il’yasova, T. M., Gulyaev, M. V., Dedukhova, V. I., Trendeleva, T. A., Plotnikov, E. Y., Zvyagilskaya, R. A., Chernyak, B. V., Zorov, D. B., Antonenko, Y. N., and Skulachev, V. P. (2014) A short-chain alkyl derivative of rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta, 1837, 1739–1747.

    Article  CAS  PubMed  Google Scholar 

  21. Rokitskaya, T. I., Ilyasova, T. M., Severina, I. I., Antonenko, Y. N., and Skulachev, V. P. (2013) Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores, Eur. Biophys. J., 42, 477–485.

    Article  CAS  PubMed  Google Scholar 

  22. Lodhi, I. J., and Semenkovich, C. F. (2009) Why we should put clothes on mice, Cell Metab., 9, 111–112.

    Article  CAS  PubMed  Google Scholar 

  23. Nedergaard, J., and Cannon, B. (2014) The browning of white adipose tissue: some burning issues, Cell Metab., 20, 396–407.

    Article  CAS  PubMed  Google Scholar 

  24. Feldmann, H. M., Golozoubova, V., Cannon, B., and Nedergaard, J. (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality, Cell Metab., 9, 203–209.

    Article  CAS  PubMed  Google Scholar 

  25. Teodoro, J. S., Zouhar, P., Flachs, P., Bardova, K., Janovska, P., Gomes, A. P., Duarte, F. V., Varela, A. T., Rolo, A. P., Palmeira, C. M., and Kopecky, J. (2014) Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice, Int. J. Obes. (Lond.), 38, 1027–1034.

    Article  CAS  Google Scholar 

  26. Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., Messaddeq, N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C., and Auwerx, J. (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature, 439, 484–489.

    Article  CAS  PubMed  Google Scholar 

  27. Jacob, M., Bjarnason, I., Rafi, S., Wrigglesworth, J., and Simpson, R. J. (2001) A study of the effects of indometacin on liver mitochondria from rats, mice and humans, Aliment. Pharmacol. Ther., 15, 1837–1842.

    Article  CAS  PubMed  Google Scholar 

  28. Connoley, I. P., Liu, Y. L., Frost, I., Reckless, I. P., Heal, D. J., and Stock, M. J. (1999) Thermogenic effects of sibutramine and its metabolites, Br. J. Pharmacol., 126, 1487–1495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ryan, D. H. (2000) Use of sibutramine and other noradrenergic and serotonergic drugs in the management of obesity, Endocrine, 13, 193–199.

    Article  CAS  PubMed  Google Scholar 

  30. Halford, J. C., Boyland, E. J., Blundell, J. E., Kirkham, T. C., and Harrold, J. A. (2010) Pharmacological management of appetite expression in obesity, Nature Rev. Endocrinol., 6, 255–269.

    Article  CAS  Google Scholar 

  31. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, Eur. J. Biochem., 182, 585–592.

    Article  PubMed  Google Scholar 

  32. Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Involvement of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria, Biochim. Biophys. Acta, 1319, 251–257.

    Article  CAS  PubMed  Google Scholar 

  33. Skulachev, V. P. (1999) Anion carriers in fatty acid-mediated physiological uncoupling, J. Bioenerg. Biomembr., 31, 431–445.

    Article  CAS  PubMed  Google Scholar 

  34. Nedergaard, J., Golozoubova, V., Matthias, A., Asadi, A., Jacobsson, A., and Cannon, B. (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency, Biochim. Biophys. Acta, 1504, 82–106.

    Article  CAS  PubMed  Google Scholar 

  35. Shabalina, I. G., Jacobsson, A., Cannon, B., and Nedergaard, J. (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids, J. Biol. Chem., 279, 38236–38248.

    Article  CAS  PubMed  Google Scholar 

  36. Shabalina, I. G., Kramarova, T. V., Nedergaard, J., and Cannon, B. (2006) Carboxyatractyloside effects on brownfat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively, Biochem. J., 399, 405–414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B., and Nedergaard, J. (2010) Chronic peroxisome proliferator-activated receptor γ (PPAR γ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes, J. Biol. Chem., 285, 7153–7164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shabalina, I. G., Ost, M., Petrovic, N., Vrbacky, M., Nedergaard, J., and Cannon, B. (2010) Uncoupling protein-1 is not leaky, Biochim. Biophys. Acta, 1797, 773–784.

    Article  CAS  PubMed  Google Scholar 

  39. Shabalina, I. G., Petrovic, N., de Jong, J. M., Kalinovich, A. V., Cannon, B., and Nedergaard, J. (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic, Cell Rep., 5, 1196–1203.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalinovich.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 5, pp. 735–745.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinovich, A.V., Shabalina, I.G. Novel mitochondrial cationic uncoupler C4R1 is an effective treatment for combating obesity in mice. Biochemistry Moscow 80, 620–628 (2015). https://doi.org/10.1134/S0006297915050156

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050156

Key words

Navigation