Skip to main content
Log in

Plasticity of tumor cell migration: acquisition of new properties or return to the past?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMT:

amoeboid-mesenchymal transition

ECM:

extracellular matrix

EMT:

epithelial-mesenchymal transition

MAT:

mesenchymal-amoeboid transition

MMPs:

matrix metalloproteinases

References

  1. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.

    PubMed  CAS  Google Scholar 

  2. Vasiliev, J. M. (2008) Reorganization of molecular morphology of epitheliocytes and connective-tissue cells in morphogenesis and carcinogenesis, Biochemistry (Moscow), 73, 528–531.

    CAS  Google Scholar 

  3. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133, 704–715.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Polyak, K., and Weinberg, R. A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits, Nature Rev. Cancer, 9, 265–273.

    CAS  Google Scholar 

  5. Lim, J., and Thiery, J. P. (2012) Epithelial-mesenchymal transitions: insights from development, Development, 139, 3471–3486.

    PubMed  CAS  Google Scholar 

  6. Chaffer, C. L., Thompson, E. W., and Williams, E. D. (2007) Mesenchymal to epithelial transition in development and disease, Cells Tissues Organs, 185, 7–19.

    PubMed  Google Scholar 

  7. Kopfstein, L., and Christofori, G. (2006) Metastasis: cellautonomous mechanisms versus contributions by the tumor microenvironment, Cell Mol. Life Sci., 63, 449–468.

    PubMed  CAS  Google Scholar 

  8. Lamouille, S., Xu, J., and Derynck, R. (2014) Molecular mechanisms of epithelial-mesenchymal transition, Nature Rev. Mol. Cell Biol., 15, 178–196.

    CAS  Google Scholar 

  9. Nelson, W. J. (2009) Remodeling epithelial cell organization: transitions between front-rear and apical-basal polarity, Cold Spring Harb. Perspect. Biol., 1, a000513.

    PubMed  PubMed Central  Google Scholar 

  10. Friedl, P., and Wolf, K. (2003) Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp., 70, 277–285.

    PubMed  CAS  Google Scholar 

  11. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin, A. Y., Brocker, E. B., and Friedl, P. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, J. Cell Biol., 20, 267–277.

    Google Scholar 

  12. Friedl, P., Hegerfeldt, Y., and Tusch, M. (2004) Collective cell migration in morphogenesis and cancer, Int. J. Dev. Biol., 48, 441–449.

    PubMed  CAS  Google Scholar 

  13. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia, Nature Rev. Mol. Cell Biol., 9, 730–736.

    CAS  Google Scholar 

  14. Fackler, O. T., and Grosse, R. (2008) Cell motility through plasma membrane blebbing, J. Cell Biol., 181, 879–884.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Hegerfeldt, Y., Tusch, M., Brocker, E. B., and Friedl, P. (2002) Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta-1-integrin function, and migration strategies, Cancer Res., 62, 2125–2130.

    PubMed  CAS  Google Scholar 

  16. Wolf, K., and Friedl, P. (2006) Molecular mechanisms of cancer cell invasion and plasticity, Br. J. Dermatol., 154, 11–15.

    PubMed  CAS  Google Scholar 

  17. Pankova, K., Rosel, D., Novotny, M., and Brabek, J. (2010) The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells, Cell Mol. Life Sci., 67, 63–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Friedl, P., Zanker, K. S., and Brocker, E. B. (1998) Cell migration strategies in 3D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function, Microsc. Res. Tech., 43, 369–378.

    PubMed  CAS  Google Scholar 

  19. Sahai, E., and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis, Nature Cell Biol., 5, 711–719.

    PubMed  CAS  Google Scholar 

  20. Friedl, P., Noble, P. B., Shields, E. D., and Zanker, K. S. (1994) Locomotor phenotypes of unstimulated CD45RAhigh and CD45ROhigh CD4+ and CD8+ lymphocytes in three-dimensional collagen lattices, Immunology, 82, 617–624.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Niggemann, B., Maaser, K., Lu, H., Kroczek, R., Zanker, K. S., and Friedl, P. (1997) Locomotor phenotypes of human tumor cell lines and T lymphocytes in a threedimensional collagen lattice, Cancer Lett., 118, 173–180.

    PubMed  CAS  Google Scholar 

  22. Diz-Munoz, A., Krieg, M., Bergert, M., IbarluceaBenitez, I., Muller, D. J., Paluch, E., and Heisenberg, C. P. (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment, PLoS Biol., 8, e1000544.

    PubMed  PubMed Central  Google Scholar 

  23. Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., Aktories, K., Kalman, D., and Bourne, H. R. (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis, J. Cell Biol., 160, 375–385.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Sasaki, A. T., Chun, C., Takeda, K., and Firtel, R. A. (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement, J. Cell Biol., 167, 505–518.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Van Haastert, P. J., and Devreotes, P. N. (2004) Chemotaxis: signalling the way forward, Nature Rev. Mol. Cell Biol., 5, 626–634.

    Google Scholar 

  26. Charest, P. G., and Firtel, R. A. (2007) Big role for small GTPases in control of directed cell movement, Biochem. J., 401, 377–390.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Vorotnikov, A. V. (2011) Chemotaxis: movement, direction, control, Biochemistry (Biochemistry), 76, 1528–1555.

    CAS  Google Scholar 

  28. Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000) Localized Rac activation dynamics visualized in living cells, Science, 290, 333–337.

    PubMed  CAS  Google Scholar 

  29. Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., and Matsuda, M. (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells, Mol. Cell Biol., 22, 6582–6591.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Schlunck, G., Damke, H., Kiosses, W. B., Rusk, N., Symons, M. H., Waterman-Storer, C. M., Schmid, S. L., and Schwartz, M. A. (2004) Modulation of Rac localization and function by dynamin, Mol. Biol. Cell, 15, 256–267.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Haugh, J. M., Codazzi, F., Teruel, M., and Meyer, T. (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides, J. Cell Biol., 1151, 1269–1280.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Cote, J.-F., Motoyama, A. B., Bush, J. A., and Vuori, K. (2005) A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling, Nature Cell Biol., 7, 797–807.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Pollard, T. D., Blanchoin L., and Mullins, R. D. (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Biomol. Struct., 29, 545–576.

    PubMed  CAS  Google Scholar 

  34. Pollard, T. D. (2007) Regulation of actin filament assembly by Arp2/3 complex and formins, Annu. Rev. Biophys. Biomol. Struct., 36, 451–477.

    PubMed  CAS  Google Scholar 

  35. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003) Cell migration: integrating signals from front to back, Science, 302, 1704–1709.

    PubMed  CAS  Google Scholar 

  36. Burridge, K., and Doughman, R. (2006) Front and back by Rho and Rac, Nature Cell Biol., 8, 781–782.

    PubMed  CAS  Google Scholar 

  37. Pertz, O. L., Hodgson, R. L., Klemke, R. L., and Hahn, K. M. (2006) Spatiotemporal dynamics of RhoA activity in migrating cells, Nature, 440, 1069–1072.

    PubMed  CAS  Google Scholar 

  38. Xu, J., Wang, F., Van Keymeulen, A., Herzmark, P., Straight, A., Kelly, K., Takuwa, Y., Sugimoto, N., Mitchison, T., and Bourne, H. R. (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils, Cell, 114, 201–214.

    PubMed  CAS  Google Scholar 

  39. Van Hennik, P. B., ten Klooster, J. P., Halstead, J. R., Voermans, C., Anthony, E. C., Divecha, N., and Hordijk, P. L. (2003) The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity, J. Biol. Chem., 278, 39166–39175.

    PubMed  Google Scholar 

  40. Ten Klooster, J. P., Jaffer, Z. M., Chernoff, J., and Hordijk, P. L. (2006) Targeting and activation of Rac1 are mediated by the exchange factor β-Pix, J. Cell Biol., 172, 759–769.

    PubMed  PubMed Central  Google Scholar 

  41. Bass, M. D., Roach, K. A., Morgan, M. R., MostafaviPour, Z., Schoen, T., Muramatsu, T., Mayer, U., Ballestrem, C., Spatz, J. P., and Humphries, M. J. (2007) Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix, J. Cell Biol., 177, 527–538.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., Matsumoto, K., and Yamada, K. M. (2005) A Rac switch regulates random versus directionally persistent cell migration, J. Cell Biol., 170, 793–802.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Wu, Yi. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K. M. (2009) A geneticallyencoded photoactivatable Rac controls the motility of living cells, Nature, 461, 104–108.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G., and Olshevskaja, L. V. (1970) Effect of colcemid on the locomotory behaviour of fibroblasts, J. Embryol. Exp. Morphol., 24, 625–640.

    PubMed  CAS  Google Scholar 

  45. Watanabe, T., Noritake, J., and Kaibuchi, K. (2005) Regulation of microtubules in cell migration, Trends Cell Biol., 15, 76–83.

    PubMed  CAS  Google Scholar 

  46. Kaverina, I., and Straube, A. (2011) Regulation of cell migration by dynamic microtubules, Semin. Cell Dev. Biol., 22, 968–974.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E., and Block, M. R. (2009) Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions, J. Cell Sci., 122, 3037–3049.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Mejillano, M. R., Kojima, S., Applewhite, D. A., Gertler, F. B., Svitkina, T. M., and Borisy, G. G. (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end, Cell Press, 118, 363–373.

    CAS  Google Scholar 

  49. Svitkina, T. M., Bulanova, T. A., Chaga, O. Y., Vignjevic, D. M., Kojima, Sh., Vasiliev, J. M., and Borisy, G. G. (2003) Mechanisms of filopodia initiation by reorganization of a dendritic network, J. Cell Biol., 160, 409.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Yang, C., Czech, L., Gerboth, S., Kojima, S., Scita, G., and Svitkina, T. (2007) Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells, PLoS Biol., 5, 317.

    Google Scholar 

  51. Small, J. V., and Sechi, A. (1988) Whole-mount electron microscopy of the cytoskeleton: negative staining methods, in Cell Biology: a Laboratory Handbook (Celis, J. E., ed.) Vol. 3, Academic Press, pp. 285–292.

    Google Scholar 

  52. Lewis, A. K., and Bridgman, P. C. (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol., 119, 1219–1243.

    PubMed  CAS  Google Scholar 

  53. Small, J. V., Stradal, T., Vignal, E., and Rottner, K. (2002) The lamellipodium: where motility begins, Trends Cell Biol., 12, 112–120.

    PubMed  CAS  Google Scholar 

  54. Mitchison, T. J., and Cramer, L. P. (1996) Actin-based cell motility and cell locomotion, Cell, 84, 371–379.

    PubMed  CAS  Google Scholar 

  55. Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., and Borisy, G. G. (2006) Role of fascin in filopodial protrusion, J. Cell Biol., 174, 863–875.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Gupton, S. L., and Gertler, F. B. (2007) Filopodia: the fingers that do the walking, Sci. STKE, 400.

  57. Mattila, P. K., and Lappalainen, P. (2008) Filopodia: molecular architecture and cellular functions, Nature Rev. Mol. Cell Biol., 9, 446–454.

    CAS  Google Scholar 

  58. Yang, C., and Svitkina, T. (2011) Filopodia initiation: focus on the Arp2/3 complex and formins, Cell Adh. Migr., 5, 402–408.

    PubMed  PubMed Central  Google Scholar 

  59. Ridley, A. J. (2001) Rho GTPases and cell migration, J. Cell Sci., 114, 2713–2722.

    PubMed  CAS  Google Scholar 

  60. Bentley, D., and Toroian-Raymond, A. (1986) Disoriented pathfinding by pioneer neuron growth cones deprived of filopodia by cytochalasin treatment, Nature, 323, 712–715.

    PubMed  CAS  Google Scholar 

  61. Chien, C. B., Rosenthal, D. E., Harris, W. A., and Holt, C. E. (1993) Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain, Neuron, 11, 237–251.

    PubMed  CAS  Google Scholar 

  62. Davenport, R. W., Dou, P., Rehder, V., and Kater, S. B. (1993) A sensory role for neuronal growth cone filopodia, Nature, 361, 721–724.

    PubMed  CAS  Google Scholar 

  63. Zheng, J. Q., Wan, J. J., and Poo, M. M. (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient, J. Neurosci., 16, 1140–1149.

    PubMed  CAS  Google Scholar 

  64. Grabham, P. W., Foley, M., Umeojiako, A., and Goldberg, D. J. (2000) Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones, J. Cell Sci., 113, 3003–3012.

    PubMed  CAS  Google Scholar 

  65. Lanier, L. M., Gates, M. A., Witke, W., Menzies, A. S., Wehman, A. M., Macklis, J. D., Kwiatkowski, D., Soriano, P., and Gertler, F. B. (1999) Mena is required for neurulation and commissure formation, Neuron, 22, 313–325.

    PubMed  CAS  Google Scholar 

  66. Bear, J. E., Svitkina, T. M., Krause, M., Schafer, D. A., Loureiro, J. J., Strasser, G. A., Maly, I. V., Chaga, O. Y., Cooper, J. A., and Borisy, G. G. (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility, Cell, 109, 509–521.

    PubMed  CAS  Google Scholar 

  67. Tokuo, H., and Ikebe, M. (2004) Myosin X transports Mena/VASP to the tip of filopodia, Biochem. Biophys. Res. Commun., 319, 214–220.

    PubMed  CAS  Google Scholar 

  68. Berg, J. S., and Cheney, R. E. (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility, Nature Cell Biol., 4, 246–250.

    PubMed  CAS  Google Scholar 

  69. Mattila, P. K., Pykalainen, A., Saarikangas, J., Paavilainen, V. O., Vihinen, H., Jokitalo, E., and Lappalainen, P. (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism, J. Cell Biol., 176, 953–964.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Yang, C., Hoelzle, M., Disanza, A., Scita, G., and Svitkina, T. (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion, PLoS One, 4, e5678.

    PubMed  PubMed Central  Google Scholar 

  71. Pellegrin, S., and Mellor, H. (2005) The Rho family GTPase Rif induces filopodia through mDia2, Curr. Biol., 15, 129–133.

    PubMed  CAS  Google Scholar 

  72. Mellor, H. (2010) The role of formins in filopodia formation, Biochim. Biophys. Acta, 1803, 191–200.

    PubMed  CAS  Google Scholar 

  73. Small, J. V., Isenberg, G., and Celis, J. E. (1978) Polarity of actin at the leading edge of cultured cells, Nature, 272, 638–639.

    PubMed  CAS  Google Scholar 

  74. Small, J. V., Rottner, K., Kaverina, I., and Anderson, K. I. (1998) Assembling an actin cytoskeleton for cell attachment and movement, Biochim. Biophys. Acta, 1404, 271–481.

    PubMed  CAS  Google Scholar 

  75. Chan, K. T., Cortesio, C. L., and Huttenlocher, A. (2009) FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion, J. Cell Biol., 185, 357–370.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Kovar, D. R., and Pollard, T. D. (2004) Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces, Proc. Natl. Acad. Sci. USA, 101, 14725–14730.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Mullins, R. D., Heuser, J. A., and Pollard, T. D. (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments, Proc. Natl. Acad. Sci. USA, 95, 6181–6186.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 453–465.

    PubMed  CAS  Google Scholar 

  79. Yamazaki, D., Kurisu, S., and Takenawa, T. (2005) Regulation of cancer cell motility through actin reorganization, Cancer Sci., 96, 379–386.

    PubMed  CAS  Google Scholar 

  80. Stradal, T. E., and Scita, G. (2006) Protein complexes regulating Arp2/3-mediated actin assembly, Curr. Opin. Cell Biol., 18, 4–10.

    PubMed  CAS  Google Scholar 

  81. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk, Nature Rev. Mol. Cell Biol., 2, 793–805.

    CAS  Google Scholar 

  82. Kaverina, I., Krylyshkina, O., and Small, J. V. (2002) Regulation of substrate adhesion dynamics during cell motility, Int. J. Biochem. Cell Biol., 34, 746–761.

    PubMed  CAS  Google Scholar 

  83. Webb, D. J., Brown, C. M., and Horwitz, A. F. (2003) Illuminating adhesion complexes in migrating cells: moving toward a bright future, Curr. Opin. Cell Biol., 15, 614–620.

    PubMed  CAS  Google Scholar 

  84. Sastry, S. K., and Burridge, K. (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics, Exp. Cell. Res., 261, 25–36.

    PubMed  CAS  Google Scholar 

  85. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., and Geiger, B. (2007) Functional atlas of the integrin adhesome, Nature Cell Biol., 9, 858–867.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Takino, T., Watanabe, Y., Matsui, M., Miyamori, H., Kodo, T., Seiki, M., and Sato, H. (2006) Membrane-type 1 matrix metalloproteinase modulates focal adhesion stability and cell migration, Exp. Cell Res., 312, 1381–1389.

    PubMed  CAS  Google Scholar 

  87. Alexandrova, A. Y., Arnold, K., Schaub, S., Vasiliev, J. M., Meister, J. J., Bershadsky, A. D., and Verkhovsky, A. B. (2008) Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow, PLoS One, 3, e3234.

    PubMed  PubMed Central  Google Scholar 

  88. Choi, C. K., Vicente-Manzanares, M., Zareno, J., Whitmore, L. A., Mogilner, A., and Horwitz, A. R. (2008) Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner, Nature Cell Biol., 10, 1039–1050.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Seals, D. F., Azucena, E. F., Jr., Pass, I., Tesfay, L., Gordon, R., Woodrow, M., Resau, J. H., and Courtneidge, S. A. (2005) The adaptor protein Tks5/Fish is required for podosome formation and function, and for the proteasedriven invasion of cancer cells, Cancer Cell, 7, 155–165.

    PubMed  CAS  Google Scholar 

  90. Carman, C. V., Sage, P. T., Sciuto, T. E., de la Fuente, M. A., Geha, R. S., Ochs, H. D., Dvorak, H. F., Dvorak, A. M., and Springer, T. A. (2007) Transcellular diapedesis is initiated by invasive podosomes, Immunity, 26, 784–797.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Weaver, A. M. (2008) Invadopodia, Curr. Biol., 18, 362–364.

    Google Scholar 

  92. Buccione, R., Caldieri, G., and Ayala, I. (2009) Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix, Cancer Metastasis Rev., 28, 137–149.

    PubMed  Google Scholar 

  93. Linder, S. (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation, Trends Cell Biol., 17, 107–117.

    PubMed  CAS  Google Scholar 

  94. Patel, A., and Dash, P. R. (2012) Formation of atypical podosomes in extravillous trophoblasts regulates extracellular matrix degradation, Eur. J. Cell Biol., 91, 171–179.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P., and Bard, F. (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein, Mol. Biol. Cell, 14, 407–416.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Nakahara, H., Howard, L., Thompson, E. W., Sato, H., Seiki, M., Yeh, Y., and Chen, W. T. (1997) Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion, Proc. Natl. Acad. Sci. USA, 94, 7959–7964.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Redondo-Munoz, J., Escobar-Diaz, E., Samaniego, R., Terol, M. J., Garcia-Marco, J. A., and Garcia-Pardo, A. (2006) MMP-9 in B-cell chronic lymphocytic leukemia is upregulated by α4β1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration, Blood, 108, 3143–3151.

    PubMed  CAS  Google Scholar 

  98. Sato, T., del Carmen Ovejero, M., Hou, P., Heegaard, A. M., Kumegawa, M., Foged, N. T., and Delaisse, J. M. (1997) Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts, J. Cell Sci., 110, 589–596.

    PubMed  CAS  Google Scholar 

  99. Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I, Nature Cell Biol., 3, 339–345.

    PubMed  CAS  Google Scholar 

  100. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing, Nature Cell Biol., 3, 346–352.

    PubMed  CAS  Google Scholar 

  101. Yoshida, K., and Soldati, T. (2006) Dissection of amoeboid movement into two mechanically distinct modes, J. Cell Sci., 119, 3833–3844.

    PubMed  CAS  Google Scholar 

  102. Maugis, B., Brugues, J., Nassoy, P., Guillen, N., Sens, P., and Amblard, F. (2010) Dynamic instability of the intracellular pressure drives bleb-based motility, J. Cell Sci., 123, 3884–3892.

    PubMed  CAS  Google Scholar 

  103. Weiser, D. C., Row, R. H., and Kimelman, D. (2009) Rhoregulated myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation, Development, 136, 2375–2384.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Cunningham, C. C. (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing, J. Cell Biol., 129, 1589–1599.

    PubMed  CAS  Google Scholar 

  105. Hagmann, J., Burger, M. M., and Dagan, D. (1999) Regulation of plasma membrane blebbing by the cytoskeleton, J. Cell. Biochem., 73, 488–499.

    PubMed  CAS  Google Scholar 

  106. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L., and Mitchison, T. J. (2005) Non-equilibration of hydrostatic pressure in blebbing cells, Nature, 435, 365–369.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J. (2006) Reassembly of contractile actin cortex in cell blebs, J. Cell Biol., 175, 477–490.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Charras, G. T., Coughlin, M., Mitchison, T. J., and Mahadevan, L. (2008) Life and times of a cellular bleb, Biophys. J., 94, 1836–1853.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Tinevez, J. Y., Schulze, U., Salbreux, G., Roensch, J., Joanny, J. F., and Paluch, E. (2009) Role of cortical tension in bleb growth, Proc. Natl. Acad. Sci. USA, 106, 18581–18586.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Kitzing, T. M., Sahadevan, A. S., Brandt, D. T., Knieling, H., Hannemann, S., Fackler, O. T., Grosshans, J., and Grosse, R. (2007) Positive feedback between Dia1, LARG and RhoA regulates cell morphology and invasion, Genes Dev., 21, 1478–1483.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Kitzing, T. M., Wang, Y., Pertz, O., Copeland, J. W., and Grosse, R. (2010) Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC, Oncogene, 29, 2441–2448.

    PubMed  CAS  Google Scholar 

  112. Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., and Marshall, J. (2008) Rac activation and inactivation control plasticity of tumor cell movement, Cell, 135, 510–523.

    PubMed  CAS  Google Scholar 

  113. Paluch, E. K., and Raz, E. (2013) The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582–590.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Goudarzi, M., Banisch, T. U., Mobin, M. B., Maghelli, N., Tarbashevich, K., Strate, I., van den Berg, J., Blaser, H., Bandemer, S., Paluch, E., Bakkers, J., Tolic-Norrelykke, I. M., and Raz, E. (2012) Identification and regulation of a molecular module for bleb-based cell motility, Dev. Cell, 23, 210–218.

    PubMed  CAS  Google Scholar 

  115. Lorentzen, A., Bamber, J., Sadok, A., Elson-Schwab, I., and Marshall, C. J. (2011) An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells, J. Cell Sci., 124, 1256–1267.

    PubMed  CAS  Google Scholar 

  116. Yanase, Y., Hide, I., Mihara, S., Shirai, Y., Saito, N., Nakata, Y., Hide, M., and Sakai, N. (2011) A critical role of conventional protein kinase C in morphological changes of rodent mast cells, Immunol. Cell Biol., 89, 149–159.

    PubMed  CAS  Google Scholar 

  117. Martinelli, S., Chen, E. J., Clarke, F., Lyck, R., Affentranger, S., Burkhardt, J. K., and Niggli, V. (2013) Ezrin/radixin/moesin proteins and flotillins cooperate to promote uropod formation in T cells, Front. Immunol., 4, 84.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Rossy, J., Gutjahr, M. C., Blaser, N., Schlicht, D., and Niggli, V. (2007) Ezrin/moesin in motile Walker 256 carcinosarcoma cells: signal-dependent relocalization and role in migration, Exp. Cell Res., 313, 1106–1120.

    PubMed  CAS  Google Scholar 

  119. Niggli, V., and Rossy, J. (2008) Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton, Int. J. Biochem. Cell Biol., 40, 344–349.

    PubMed  CAS  Google Scholar 

  120. Gadea, G., de Toledo, M., Anguille, C., and Roux, P. (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices, J. Cell Biol., 178, 23–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Tournaviti, S., Hannemann, S., Terjung, S., Kitzing, T. M., Stegmayer, C., Ritzerfeld, J., Walther, P., Grosse, R., Nicke, W., and Fackler, O. T. (2007) SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility, J. Cell Sci., 120, 3820–3829.

    PubMed  CAS  Google Scholar 

  122. Sabeh, F., Shimizu-Hirota, R., and Weiss, S. J. (2009) Protease-dependent versus independent cancer cell invasion programs: three-dimensional amoeboid movement revisited, J. Cell Biol., 185, 11–19.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Ridley, A. J. (2011) Life at the leading edge, Cell, 145, 1012–1022.

    PubMed  CAS  Google Scholar 

  124. Wilkinson, S., Paterson, H. F., and Marshall, C. J. (2005) Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion, Nature Cell Biol., 7, 255–261.

    PubMed  CAS  Google Scholar 

  125. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., and Sahai, E. (2006) ROCK- and myosin-dependent matrix deformation enables protease-independent tumorcell invasion in vivo, Curr. Biol., 16, 1515–1523.

    PubMed  CAS  Google Scholar 

  126. Ohta, Y., Hartwig, J. H., and Stossel, T. P. (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodeling, Nature Cell Biol., 8, 803–814.

    PubMed  CAS  Google Scholar 

  127. Yamazaki, D., Kurisu, S., and Takenawa, T. (2009) Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates, Oncogene, 28, 1570–1583.

    PubMed  CAS  Google Scholar 

  128. Bergert, M., Chandradoss, S. D., Desai, R. A., and Paluch, E. (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proc. Natl. Acad. Sci. USA, 109, 14434–14439.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Cougoule, C., Goethem, E., Le Cabec, V., and Lafouresse, F. (2012) Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments, Eur. J. Cell Biol., 91, 938–949.

    PubMed  CAS  Google Scholar 

  130. Ehrbar, M., Sala, A., Lienemann, P., Ranga, A., Mosiewicz, K., Bittermann, A., Rizzi, S. C., Weber, F. E., and Lutolf, M. P. (2011) Elucidating the role of matrix stiffness in 3D cell migration and remodeling, Biophys. J., 100, 284–293.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Liu, Z., Yang, X., Chen, C., Liu, B., Ren, B., Wang, L., Zhao, K., Yu, S., and Ming, H. (2013) Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells, Oncol. Rep., 30, 2127–2136.

    PubMed  CAS  Google Scholar 

  132. Zaman, M. H., Trapani, L. M., Sieminski, A. L., Mackellar, D., Gong, H., Kamm, R. D., Wells, A., Lauffenburger, D. A., and Matsudaira, P. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proc. Natl. Acad. Sci. USA, 103, 10889–10894.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Sales, A. D., Lobo, C. H., Carvalho, A. A., Moura, A. A., and Rodrigues, A. P. R. (2013) Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation, Genet. Mol. Res., 12, 6718–6732.

    PubMed  CAS  Google Scholar 

  134. Papadopoulos, M. C., Saadoun, S., and Verkman, A. S. (2008) Aquaporins and cell migration, Pflugers Arch., 456, 693–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Loitto, V. M., Forslund, T., Sundqvist, T., Magnusson, K. E., and Gustafsson, M. (2002) Neutrophil leukocyte motility requires directed water influx, J. Leukoc. Biol., 71, 212–222.

    PubMed  CAS  Google Scholar 

  136. Loitto, V. M., Karlsson, T., and Magnusson, K. E. (2009) Water flux in cell motility: expanding the mechanisms of membrane protrusion, Cell Motil. Cytoskeleton, 66, 237–247.

    PubMed  CAS  Google Scholar 

  137. Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M., and Verkman, A. S. (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption, Nature, 434, 786–792.

    PubMed  CAS  Google Scholar 

  138. Karlsson, T., Glogauer, M., Ellen, R. P., Loitto, V. M., Magnusson, K. E., and Magalhaes, M. A. (2011) Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization, J. Leukoc. Biol., 90, 963–973.

    PubMed  CAS  Google Scholar 

  139. Karlsson, T., Lagerholm, B. C., Vikstrom, E., Loitto, V. M., and Magnusson, K. E. (2013) Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing, Biochem. Biophys. Res. Commun., 430, 993–998.

    PubMed  CAS  Google Scholar 

  140. Chen, X. M., O’Hara, S. P., Huang, B. Q., Splinter, P. L., Nelson, J. B., and LaRusso, N. F. (2005) Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host cell membrane protrusion, Proc. Natl. Acad. Sci. USA, 102, 6338–6343.

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Loitto, V. M., Huang, C., Sigal, Y. J., and Jacobson, K. (2007) Filopodia are induced by aquaporin-9 expression, Exp. Cell Res., 313, 1295–1306.

    PubMed  CAS  Google Scholar 

  142. Karlsson, T., Bolshakova, A., Magalhaes, M. A. O., Loitto, V. M., and Magnusson, K.-E. (2013) Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions, PLoS One, 8, e59901.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Huebert, R. C., Vasdev, M. M., Shergill, U., Das, A., Huang, B. Q., Charlton, M. R., LaRusso, N. F., and Shah, V. H. (2010) Aquaporin-1 facilitates angiogenic invasion in the pathologic neovasculature that accompanies cirrhosis, Hepatology, 52, 238–248.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Schwab, A., Fabian, A., Hanley, P. J., and Stock, C. (2012) Role of ion channels and transporters in cell migration, Physiol. Rev., 92, 1865–1913.

    PubMed  CAS  Google Scholar 

  145. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S., and Bell, B. A. (2002) Aquaporin-4 expression is increased in oedematous human brain tumours, J. Neurol. Neurosurg. Psychiatry, 72, 262–265.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Clucas, J., and Valderrama, F. (2014) ERM proteins in cancer progression, J. Cell Sci., 127, 267–275.

    PubMed  CAS  Google Scholar 

  147. Serrador, J. M., Alonso-Lebrero, J. L., del Pozo, M. A., Furthmayr, H., Schwartz-Albiez, R., Calvo, J., Lozano, F., and Sanchez-Madrid, F. (1997) Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization, J. Cell Biol., 138, 1409–1423.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Prag, S., Parsons, M., Keppler, M. D., Ameer-Beg, S. M., Barber, P., Hunt, J., Beavil, A. J., Calvert, R., Arpin, M., Vojnovic, B., and Ng, T. (2007) Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42, Mol. Biol. Cell, 18, 2935–2948.

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Estecha, A., Sanchez-Martin, L., Puig-Kroger, A., Bartolome, R. A., Teixido, J., Samaniego, R., and Sanchez-Mateos, P. (2009) Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion, J. Cell Sci., 122, 3492–3501.

    PubMed  CAS  Google Scholar 

  150. Khanna, C., Wan, X., Bose, S., Cassaday, R., Olomu, O., Mendoza, A., Yeung, C., Gorlick, R., Hewitt, S. M., and Helman, L. J. (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis, Nature Med., 10, 182–186.

    PubMed  CAS  Google Scholar 

  151. Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P. S., and Merlino, G. (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators, Nature Med., 10, 175–181.

    PubMed  CAS  Google Scholar 

  152. Kobayashi, H., Sagara, J., Kurita, H., Morifuji, M., Ohishi, M., Kurashina, K., and Taniguchi, S. (2004) Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma, Clin. Cancer Res., 10, 572–580.

    PubMed  CAS  Google Scholar 

  153. Condeelis, J., Singer, R. H., and Segall, J. E. (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility, Annu. Rev. Cell Dev. Biol., 21, 695–718.

    PubMed  CAS  Google Scholar 

  154. Charafe-Jauffret, E., Monville, F., Bertucci, F., Esterni, B., Ginestier, C., Finetti, P., Cervera, N., Geneix, J., Hassanein, M., Rabayrol, L., Sobol, H., Taranger-Charpin, C., Xerri, L., Viens, P., Birnbaum, D., and Jacquemier, J. (2007) Moesin expression is a marker of basal breast carcinomas, Int. J. Cancer, 121, 1779–1785.

    PubMed  CAS  Google Scholar 

  155. Hiscox, S., and Jiang, W. G. (1999) Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin, J. Cell Sci., 112, 3081–3090.

    PubMed  CAS  Google Scholar 

  156. Fehon, R. G., McClatchey, A. I., and Bretscher, A. (2010) Organizing the cell cortex: the role of ERM proteins, Rev. Mol. Cell Biol., 11, 276–287.

    CAS  Google Scholar 

  157. Dugina, V. B., Alexandrova, A., Lane, K., Bulanova, E., and Vasiliev, J. M. (1995) The role of the microtubular system in response to HGF/SF, J. Cell Sci., 108, 1659–1667.

    PubMed  CAS  Google Scholar 

  158. Laser-Azogui, A., Diamant-Levi, T., Israeli, S., Roytman, Y., and Tsarfaty, I. (2013) Met-induced membrane blebbing leads to amoeboid cell motility and invasion, Oncogene, 33, 1–11.

    Google Scholar 

  159. Alexandrova, A. Y., Dugina, V. B., Ivanova, O. J., Kaverina, I. N., and Vasiliev, J. M (1998) Scatter factor induces segregation of multinuclear cells into several discrete motile domains, Cell Motil. Cytoskeleton, 39, 147–158.

    PubMed  CAS  Google Scholar 

  160. Zhitniak, I. Iu., and Glushankova, N. A. (2011) Morphology, cell-cell interactions, and migratory activity of IAR-2 epithelial cells transformed with the RAS oncogene: contribution of cell adhesion protein E-cadherin, Ontogenez, 42, 453–464.

    PubMed  Google Scholar 

  161. He, H., Davidson, A. J., Wu, D., Marshall, F. F., Chung, L. W., Zhau, H. E., He, D., and Wang, R. (2010) Phorbol ester phorbol-12-myristate-13-acetate induces epithelial to mesenchymal transition in human prostate cancer ARCaPE cells, Prostate, 70, 1119–1126.

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Niggemann, B., Drell, T. L., Joseph, J., Weidt, C., Lang, K., Zaenker, K. S., and Entschladen, F. (2004) Tumor cell locomotion: differential dynamics of spontaneous and induced migration in a 3D collagen matrix, Exp. Cell Res., 298, 178–187.

    PubMed  CAS  Google Scholar 

  163. Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., and Mueller, S. C. (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function, Cancer Res., 66, 3034–3043.

    PubMed  CAS  Google Scholar 

  164. Buccione, R., Orth, J. D., and McNiven, M. A. (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles, Nature Rev. Mol. Cell Biol., 5, 647–657.

    CAS  Google Scholar 

  165. Hauck, C. R., Hsia, D. A., Ilic, D., and Schlaepfer, D. D. (2002) v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion, J. Biol. Chem., 277, 12487–12490.

    PubMed  CAS  Google Scholar 

  166. Singh, V. P., and McNiven, M. A. (2008) Src-mediated cortactin phosphorylation regulates actin localization and injurious blebbing in acinar cells, Mol. Biol. Cell, 19, 2339–2347.

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Friedl, P., Borgmann, S., and Brocker, E. B. (2001) Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement, J. Leukoc. Biol., 70, 491–509.

    PubMed  CAS  Google Scholar 

  168. Friedl, P., and Weigelin, B. (2008) Interstitial leukocyte migration and immune function, Nature Immunol., 9, 960–969.

    CAS  Google Scholar 

  169. Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I., and Le Cabec, V. (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures, J. Immunol., 184, 1049–1061.

    PubMed  Google Scholar 

  170. Guiet, R., Van Goethem, E., Cougoule, C., Balor, S., Valette, A., Al Saati, T., Lowell, C. A., Le Cabec, V., and Maridonneau-Parini, I. (2011) The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumor cells, J. Immunol., 187, 3806–3814.

    PubMed  CAS  Google Scholar 

  171. Szczur, K., Xu, H., Atkinson, S., Zheng, Y., and Filippi, M. D. (2006) Rho GTPase CDC42 regulates directionality and random movement via distinct MAPK pathways in neutrophils, Blood, 108, 4205–4213.

    PubMed  CAS  Google Scholar 

  172. Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease, J. Clin. Invest., 119, 1438–1449.

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Khromova, N., Kopnin, P., Rybko, V., and Kopnin, B. P. (2012) Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms, Oncogene, 31, 1389–1397.

    PubMed  CAS  Google Scholar 

  174. Singh, A., and Settleman, J. (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene, 29, 4741–4751.

    PubMed  CAS  PubMed Central  Google Scholar 

  175. Chikina, A. S., and Alexandrova, A. Y. (2014) The cellular mechanisms and regulation of metastasis formation, Mol. Biol. (Moscow), 48, 165–180.

    CAS  Google Scholar 

  176. Smith, H., Whittall, C., Weksler, B., and Middleton, J. (2012) Chemokines stimulate bidirectional migration of human mesenchymal stem cells across bone marrow endothelial cells, Stem Cells, 21, 476–486.

    CAS  Google Scholar 

  177. Abelev, G. I. (1989) Alpha-fetoprotein: 25 years of study, Tumour Biol., 10, 63–74.

    PubMed  CAS  Google Scholar 

  178. Stavrovskaya, A. A., and Stromskaya, T. P. (2008) Transport proteins of the ABC family and multidrug resistance of tumor cells, Biochemistry (Moscow), 73, 592–604.

    CAS  Google Scholar 

  179. Chumakov, P. M. (2007) Versatile functions of p53 protein in multicellular organisms, Biochemistry (Moscow), 72, 1399–1421.

    CAS  PubMed Central  Google Scholar 

  180. Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I., Grosveld, G. C., Osawa, M., Nakauchi, H., and Sorrentino, B. P. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nature Med., 7, 1028–1034.

    PubMed  CAS  Google Scholar 

  181. Bunting, K. D. (2002) ABC transporters as phenotypic markers and functional regulators of stem cells, Stem Cells, 20, 11–20.

    PubMed  CAS  Google Scholar 

  182. Paltsev, M. A. (ed.) (2009) Biology of Stem Cells and Cellular Technologies [in Russian], Meditsina, Moscow.

    Google Scholar 

  183. Zhang, W., Kai, K., Choi, D. S., Iwamoto, T., Nguyen, Y. H., Wong, H., Landis, M. D., Ueno, N. T., Chang, J., and Qin, L. (2012) Microfluidics separation reveals the stemcell-like deformability of tumor-initiating cells, Proc. Natl. Acad. Sci. USA, 109, 18707–18712.

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Efremov, Y. M., Lomakina, M. E., Bagrov, D. V., Makhnovskiy, P. I., Alexandrova, A. Y., Kirpichnikov, M. P., and Shaitan, K. V. (2014) Mechanical properties of fibroblasts depend on level of cancer transformation, Biochim. Biophys. Acta, 1843, 1013–1019.

    PubMed  CAS  Google Scholar 

  185. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., and Discher, D. E. (2007) Physical plasticity of the nucleus in stem cell differentiation, Proc. Natl. Acad. Sci. USA, 104, 15619–15624.

    PubMed  CAS  PubMed Central  Google Scholar 

  186. Titushkin, I., and Cho, M. (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells, Biophys. J., 93, 3693–3702.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Alexandrova.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1169–1187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrova, A.Y. Plasticity of tumor cell migration: acquisition of new properties or return to the past?. Biochemistry Moscow 79, 947–963 (2014). https://doi.org/10.1134/S0006297914090107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090107

Key words

Navigation