Skip to main content
Log in

Dynamic phase microscopy reveals periodic oscillations of endoplasmic reticulum during network formation

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dynamic phase microscopy was used to study the dynamic events of formation of the endoplasmic reticulum (ER) in interphase-arrested Xenopus egg extract. We have shown that the ER periodically oscillated in an ATP-dependent manner in the frequency range of 1.6–2.2 Hz, while the tubular membrane network formed in vitro. The spectral density, i.e. the pattern of a given frequency component in the Fourier spectrum, was strongly correlated with the dynamic events during microtubule-dependent and microtubule-independent ER network formation observed by video-enhanced contrast differential interference contrast and fluorescence microscopy. Because the 1.6–2.2 Hz frequency of oscillation during the network formation was detected both in the presence and absence of microtubules, it appears to be an intrinsic ATP-dependent ER membrane property. Several characteristic active and inactive stages of ER network formation were observed both in the presence and absence of microtubules. However, data analysis of these stages indicated that microtubules and dynein motor activity have a strong influence and a cooperative effect on the kinetics of ER formation by controlled fusion reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DP microscopy:

dynamic phase microscopy

ER:

endoplasmic reticulum

OPD:

optical path difference

VEC-DIC microscopy:

video-enhanced contrast differential interference contrast microscopy

References

  1. Terasaki, M., Chen, L. B., and Fujiwara, K. (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures, J. Cell Biol., 103, 1557–1568.

    Article  PubMed  CAS  Google Scholar 

  2. Lee, C., and Chen, L. B. (1988) Dynamic behavior of endoplasmic reticulum in living cells, Cell, 54, 37–46.

    Article  PubMed  CAS  Google Scholar 

  3. Allan, V., and Vale, R. (1991) Cell cycle control of microtubule-based membrane transport and tubule formation in vitro, J. Cell Biol., 113, 347–359.

    Article  PubMed  CAS  Google Scholar 

  4. Allan, V., and Vale, R. (1994) Movement of membrane tubules along microtubules in vitro: evidence for specialized sites of motor attachment, J. Cell Sci., 107, 1885–1897.

    PubMed  CAS  Google Scholar 

  5. Steffen, W., Karki, S., Vaughan, K. T., Vallee, R. B., Holzbaur, E. L. F., Weiss, D. G., and Kuznetsov, S. A. (1997) The involvement of the intermediate chain of cytoplasmic dynein in binding the motor complex to membranous organelle of Xenopus oocytes, Mol. Biol. Cell, 8, 2077–2088.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Dreier, L., and Rapoport, T. A. (2000) In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction, J. Cell Biol., 148, 883–898.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang, S., Romano, F. B., Field, C. M., Mitchison, T. J., and Rapoport, T. A. (2013) Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts, J. Cell Biol., 203, 801–814.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Wollert, T., Weiss, D. G., Gerdes, H.-H., and Kuznetsov, S. A. (2002) Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis, J. Cell Biol., 159, 571–577.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tychinsky, V. P., Weiss, D. G., Vyshenskaya, T. V., Yaguzhinskii, L. S., and Nikandrov, S. L. (2000) Cooperative processes in mitochondria: observation by dynamic phase microscopy, Biophysics, 45, 844–851.

    Google Scholar 

  10. Tychinsky, V. P. (2001) Coherent phase microscopy of intracellular processes, Physics-Uspekhi, 44, 649–662.

    Google Scholar 

  11. Weiss, D. G., Tychinsky, V. P., Steffen, W., and Budde, A. (2001) Digital light microscopy techniques for the study of living cytoplasm, in Image Analysis in Biology: Methods and Application (Hader, D. P., ed.) CRC Press, Boca Raton, pp. 209–239.

    Google Scholar 

  12. Tychinsky, V. P., Kufal, G., Odintsov, A., and Vyshenskaya, T. V. (1997) The measurements of submicrometer structures with the Airyscan laser phase microscope, Quantum Electronics, 27, 735–739.

    Article  Google Scholar 

  13. Allen, R. D., Allen, N. S., and Travis, J. L. (1981) Videoenhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. Cytoskel., 1, 291–302.

    Article  CAS  Google Scholar 

  14. Allen, R. D., Weiss, D. G., Hayden, J., Brown, D. T., Fujiwake, H., and Simpson, M. (1985) Gliding movement of bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport, J. Cell Biol., 100, 1736–1752.

    Article  PubMed  CAS  Google Scholar 

  15. Weiss, D. G., Maile, W., Wick, R. A., and Steffen, W. (1999) Video microscopy, in Light Microscopy in Biology. A Practical Approach (Lacey, A. J., ed.) IRL Press, Oxford, pp. 73–149.

    Google Scholar 

  16. Allan, V. (1995) Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro, J. Cell Biol., 128, 879–891.

    Article  PubMed  CAS  Google Scholar 

  17. Levin, S., and Korenstein, R. (1991) Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton, Biophys. J., 60, 733–737.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mittelman, L., Levin, S., Verschueren, H., De Baetselier, P., and Korenstein, R. (1994) Direct correlation between cell membrane fluctuations, cell filterability and the metastatic potential of lymphoid cell lines, Biochem. Biophys. Res. Commun., 203, 899–906.

    Article  PubMed  CAS  Google Scholar 

  19. Krol, A. Y., Grinfeldt, M. G., Levin, S. V., and Smilgavichus, A. D. (1990) Local mechanical oscillations of the cell surface within the range 0.2–30 Hz, Eur. Biophys. J., 19, 93–99.

    PubMed  Google Scholar 

  20. Tuvia, S., Levin, S., Bitler, A., and Korenstein, R. (1998) Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes, J. Cell Biol., 141, 1551–1561.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Vladimir, P., Tychinsky, V. P., and Tikhonov, A. N. (2010) Interference microscopy in cell biophysics. 2. Visualization of individual cells and energy-transducing organelles, Cell Biochem. Biophys., 58, 117–128.

    Article  Google Scholar 

  22. Waterman-Storer, C. M., Gregory, J., Parsons, S. F., and Salmon, E. D. (1995) Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts, J. Cell Biol., 130, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  23. Gard, D. L., Hafezi, S., Zhang, T., and Doxsey, S. J. (1990) Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle, J. Cell Biol., 110, 2033–2042.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuznetsov.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1124–1134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyshenskaya, T.V., Tychinsky, V.P., Weiss, D.G. et al. Dynamic phase microscopy reveals periodic oscillations of endoplasmic reticulum during network formation. Biochemistry Moscow 79, 907–916 (2014). https://doi.org/10.1134/S0006297914090077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090077

Key words

Navigation