Skip to main content
Log in

Identification and characterization of SlVKOR, a disulfide bond formation protein from Solanum lycopersicum, and bioinformatic analysis of plant VKORs

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Homologs of vitamin K epoxide reductase (VKOR) exist widely in plants. However, only VKOR of Arabidopsis thaliana has been the subject of many studies to date. In the present study, the coding region of a VKOR from Solanum lyco-persicum (JF951971 in GenBank) was cloned; it contained a membrane domain (VKOR domain) and an additional soluble thioredoxin-like (Trx-like) domain. Bioinformatic analysis showed that the first 47 amino acids in the N-terminus should act as a transit peptide targeting the protein to the chloroplast. Western blot demonstrated that the protein is localized in thylakoid membrane with the Trx-like domain facing the lumen. Modeling of three-dimensional structure showed that SlVKOR has a similar conformation with Arabidopsis and cyanobacterial VKORs, with five transmembrane segments in the VKOR domain and a typical Trx-like domain in the lumen. Functional assay showed that the full-length of SlVKOR with Trx-like domain without the transit peptide could catalyze the formation of disulfide bonds. Similar transit peptides at the N-terminus commonly exist in plant VKORs, most of them targeting to chloroplast according to prediction. Comparison of sequences and structures from different plants indicated that all plant VKORs possess two domains, a transmembrane VKOR domain and a soluble Trx-like domain, each having four conservative cysteines. The cysteines were predicted to be related to the function of catalyzing the formation of disulfide bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cain, D., Hutson, S. M., and Wallin, R. (1997) J. Biol. Chem., 272, 29068–29075.

    Article  CAS  PubMed  Google Scholar 

  2. Li, W., Schulman, S., Dutton, R. J., Boyd, D., Beckwith, J., and Rapoport, T. A. (2010) Nature, 463, 507–512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Singh, A. K., Bhattacharyya-Pakrasi, M., and Pakrasi, H. B. (2008) J. Biol. Chem., 283, 15762–15770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Goodstadt, L., and Ponting, C. P. (2004) Trends Biochem. Sci., 29, 289–292.

    Article  CAS  PubMed  Google Scholar 

  5. Furt, F., Oostende, C., Widhalm, J. R., Dale, M. A., Wertz, J., and Basset, G. J. (2010) Plant J., 64, 38–46.

    CAS  PubMed  Google Scholar 

  6. Feng, W. K., Wang, L., Lu, Y., and Wang, X. Y. (2011) FEBS J., 278, 3419–3430.

    Article  CAS  PubMed  Google Scholar 

  7. Karamoko, M., Cline, S., Redding, K., Ruiz, N., and Hamel, P. P. (2011) Plant Cell, 23, 4462–4475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lu, Y., Wang, H. R., Li, H., Cui, H. R., Feng, Y. G., and Wang, X. Y. (2013) Plant Cell Rep., 32, 1427–1440.

    Article  CAS  PubMed  Google Scholar 

  9. Guzman, L. M., Barondess, J. J., and Beckwith, J. (1992) J. Bacteriol., 174, 7716–7728.

    CAS  PubMed  Google Scholar 

  10. Armbruster, U., Zuhlke, J., Rengstl, B., Kreller, R., Makarenko, E., Ruhle, T., Schunemann, D., Jahns, P., Weisshaar, B., Nickelsen, J., and Leister, D. (2010) Plant Cell, 22, 3439–3460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jander, G., Martin, N. L., and Beckwith, J. (1994) EMBO J., 13, 5121–5127.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Tian, H., Boyd, D., and Beckwith, J. (2000) Proc. Natl. Acad. Sci. USA, 97, 4730–4735.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) Bioinformatics, 22, 195–201.

    Article  CAS  PubMed  Google Scholar 

  14. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Nucleic Acids Res., 31, 3381–3385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Guex, N., and Peitsch, M. C. (1997) Electrophoresis, 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  16. Bardwell, J. C., McGovern, K., and Beckwith, J. (1991) Cell, 67, 581–589.

    Article  CAS  PubMed  Google Scholar 

  17. Bardwell, J. C., Lee, J. O., Jander, G., Martin, N., Belin, D., and Beckwith, J. (1993) Proc. Natl. Acad. Sci. USA, 90, 1038–1042.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dailey, F. E., and Berg, H. C. (1993) J. Bacteriol., 175, 3236–3239.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kadokura, H., Bader, M., Tian, H., Bardwell, J. C., and Beckwith, J. (2000) Proc. Natl. Acad. Sci. USA, 97, 10884–10889.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Goyer, A., Haslekas, C., Miginiac-Maslow, M., Klein, U., Le Marechal, P., Jacquot, J. P., and Decottignies, P. (2002) Eur. J. Biochem., 269, 272–282.

    Article  CAS  PubMed  Google Scholar 

  21. Martin, J. L. (1995) Structure, 3, 245–250.

    Article  CAS  PubMed  Google Scholar 

  22. Rost, S., Fregin, A., Ivaskevicius, V., Conzelmann, E., Hortnagel, K., Pelz, H. J., Lappegard, K., Seifried, E., Scharrer, I., Tuddenham, E. G., Muller, C. I., Strom, T. M., and Oldenburg, J. (2004) Nature, 427, 537–541.

    Article  CAS  PubMed  Google Scholar 

  23. Oldenburg, J., Bevans, C. G., Muller, C. R., and Watzka, M. (2006) Antioxid. Redox Signal, 8, 347–353.

    Article  CAS  PubMed  Google Scholar 

  24. Kadokura, H., and Beckwith, J. (2010) Antioxid. Redox Signal, 13, 1231–1246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kadokura, H., and Beckwith, J. (2002) EMBO J., 21, 2354–2363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Eser, M., Masip, L., Kadokura, H., Georgiou, G., and Beckwith, J. (2009) Proc. Natl. Acad. Sci. USA, 106, 1572–1577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Wang.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 5, pp. 560–571.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM13-345, February 23, 2014.

These authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, CM., Yang, XJ., Du, JJ. et al. Identification and characterization of SlVKOR, a disulfide bond formation protein from Solanum lycopersicum, and bioinformatic analysis of plant VKORs. Biochemistry Moscow 79, 440–449 (2014). https://doi.org/10.1134/S0006297914050083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914050083

Key words

Navigation