Skip to main content
Log in

On the Solution of Generalized Lyapunov Equations for a Class of Continuous Bilinear Time-Varying Systems

  • THEMATIC ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We have developed a method and algorithms for solving the generalized Lyapunov equation for a wide class of continuous time-varying bilinear systems based on the Gramian method and an iterative solution construction method proposed earlier for such equations. The approach consists in diagonalizing the original system, obtaining a separable spectral decomposition of the Gramian of the time-invariant linear part in terms of the combination spectrum of the dynamics matrix of the linear part, applying the spectral decomposition of the kernel matrix of the solution obtained at the previous step at each iteration step, and then aggregating the matrix entries. A spectral decomposition of the Gramians of controllability and observability of a time-varying bilinear system is obtained as the sum of sub-Gramian matrices corresponding to pair combinations of the eigenvalues of the dynamics matrix of the linear part. A new method and algorithm for entry-by-entry calculation of matrices for solving the generalized Lyapunov equation for bilinear systems has been developed. The fundamental novelty of the approach lies in the transfer of calculations from the solution matrix to the calculation of the sequence of its entries at each iteration step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Antoulas, A.C., Approximation of large-scale dynamical systems, SIAM J. Control Optim., 2005. https://doi.org/10.1137/1.9780898718713

  2. Vasiliev, S.N. and Kosov, A.A., Analysis of the dynamics of hybrid systems using general Lyapunov functions and multiple homomorphisms, Autom. Remote Control, 2011, vol. 72, no. 6. https://doi.org/10.1134/S000511791106004X

  3. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-Dimensional Linear Plants), Moscow: Nauka, 1976.

    MATH  Google Scholar 

  4. Polyak, B.T., Khlebnikov, M.V., and Rapoport, L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical Automatic Control Theory), Moscow: LENAND, 2019.

    Google Scholar 

  5. Zubov, N.E., Zybin, E.Yu., Mikrin, E.A., Misrikhanov, M.Sh., and Ryabchenko, V.N., General analytical forms for the solution of the Sylvester and Lyapunov equations for continuous and discrete dynamic systems, J. Comput. Syst. Sci. Int., 2017, vol. 56, no. 1, pp. 3–8.

    Article  MathSciNet  Google Scholar 

  6. Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (Embedding of Systems. Analytical Approach to the Analysis and Synthesis of Matrix Systems), Kaluga: Izd. N.F. Bochkarevoi, 2006.

    Google Scholar 

  7. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Designing Control Systems), Moscow: Vyssh. Shkola, 1989.

    MATH  Google Scholar 

  8. Korovin, S.K. and Fomichev, V.V., Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennost’yu (State Observers for Linear Systems with Uncertainty), Moscow: Fizmatlit, 2007.

    Google Scholar 

  9. Yadykin, I.B. and Galyaev, A.A., On the methods for calculation of Gramians and their use in analysis of linear dynamic systems, Autom. Remote Control, 2013, vol. 74, no. 2, pp. 207–224. https://doi.org/10.1134/S0005117913020045

    Article  MathSciNet  MATH  Google Scholar 

  10. Al-Baiyat, S.A. and Bettayeb, M., A new model reduction scheme for \( k \)-power bilinear systems, Proc. 32nd IEEE Conf. Decis. Control, 1993, pp. 22–27. https://doi.org/10.1109/CDC.1993.325196

  11. Siu, T. and Schetzen, M., Convergence of Volterra series representation and BIBO stability of bilinear systems, Int. J. Syst. Sci., 1991, vol. 22, no. 12, pp. 2679–2684. https://doi.org/10.1080/00207729108910824

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Alessandro, P., Isidori, A., and Ruberti, A., Realization and structure theory of bilinear dynamic systems, SIAM J. Control Optim., 1974, vol. 12, pp. 517–535.

    Article  Google Scholar 

  13. Benner, P., Cao, X., and Schilders, W., A bilinear \( H2 \) model order reduction approach to linear parameter-varying systems, Adv. Comput. Math., 2019, vol. 45, no. (5–6), pp. 2241–2271. https://doi.org/10.1007/s10444-019-09695-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Yadykin, I.B. and Iskakov, A.B., Spectral decompositions for the solutions of Lyapunov equations for bilinear dynamical systems, Dokl. Math., 2019, vol. 100, no. 2, pp. 501–504. https://doi.org/10.31857/S0869-56524886599-603

    Article  MATH  Google Scholar 

  15. Timin, V.N., Kustov, A.Y., Kurdyukov, A.P., Goldin, D.A., and Vershinin, Y.A., Suboptimal anisotropic filtering for linear discrete nonstationary systems with uncentered external disturbance, Autom. Remote Control, 2019, vol. 80, no. 1, pp. 1–15. https://doi.org/10.1134/S0005117919010016

    Article  MathSciNet  MATH  Google Scholar 

  16. Petrov, B.N., Rutkovskii, V.Yu., and Zemlyakov, S.D., Adaptivnoe koordinatno-parametricheskoe upravlenie nestatsionarnymi ob”ektami (Adaptive Coordinate-Parametric Control of Time-Varying Plants), Moscow: Nauka, 1980.

    MATH  Google Scholar 

  17. Lubbock, J. and Bansal, V., Multidimensional Laplace transforms for solution of nonlinear equation, Proc. IEEE, 1969, vol. 116, no. 12, pp. 2075–2082.

    MathSciNet  Google Scholar 

  18. Pupkov, K.A., Kapalin, V.I., and Yushchenko, A.S., Funktsional’nye ryady v teorii nelineinykh sistem (Function Series in the Theory of Nonlinear Systems), Moscow: Nauka, 1976.

    MATH  Google Scholar 

  19. Solodovnikov, V.V., Dmitriev, A.N., and Egupov, N.D., Ch. XVIII. Analysis and synthesis of nonlinear automatic control systems using Volterra series and orthogonal spectra, Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo upravleniya. Kn. 3. Ch. II, (Technical Cybernetics. Theory of Automatic Control. Book 3. Part II), Moscow: Mashinostroenie, 1969, pp. 223–256.

  20. Zhang, L. and Lam, J., On \( H2 \) model order reduction of bilinear systems, Automatica, 2002, vol. 38, pp. 205–216. https://doi.org/10.1080/00207179.2020.1740945

    Article  MATH  Google Scholar 

  21. Benner, P. and Damm, T., Lyapunov equations, energy functionals and model order reduction of bilinear and stochastic systems, SIAM J. Control Optim., 2011, vol. 49, no. 2, pp. 680–711. https://doi.org/10.1137/09075041X

    Article  MathSciNet  MATH  Google Scholar 

  22. Mironovsky, L.A. and Solovyeva, T.N., Analysis and synthesis of modally balanced systems, Autom. Remote Control, 2013, vol. 74, no. 4, pp. 588–603.

    Article  MathSciNet  Google Scholar 

  23. Hauksdottir, A.S. and Sigurdsson, S.P., The continuous closed form controllability Gramian and its inverse, Am. Control Conf. (St. Louis, MO, USA, June 10–12, 2009), pp. 5345–5351.

  24. Xiao, C.S., Feng, Z.M., and Shan, X.M., On the solution of the continuous-time Lyapunov matrix equation in two canonical forms, IEE Proc.-D., 1992, vol. 139, no. 3, pp. 286–290.

    Article  Google Scholar 

  25. Faddeev, D.K. and Faddeeva, V.N., Vychislitel’nye metody lineinoi algebry (Computational Methods of Linear Algebra), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  26. Voropai, N.I., Golub, I.I., Efimov, D.N., Iskakov, A.B., and Yadykin, I.B., Spectral and modal methods for studying stability and control of electric power systems, Autom. Remote Control, 2020, vol. 81, no. 10, pp. 1751–1774. https://doi.org/10.1134/S000511792010001X

    Article  MathSciNet  MATH  Google Scholar 

  27. Iskakov, A.B. and Yadykin, I.B., Lyapunov modal analysis and participation factors applied to small-signal stability of power systems, Automatica, 2021, vol. 132, no. С. https://doi.org/10.1016/j.automatica.2021.109814

  28. Boichenko, V.A., Kurdyukov, A.P., Timin, V.N., Chaikovskii, M.M., and Yadykin, I.B., Some methods for synthesizing reduced-order and given-structure controllers, Upr. Bol’sh. Sist., 2007, no. 19, pp. 23–126.

  29. Yadikin, I. and Galyaev, I., On the solution of matrix generalized Lyapunov equations for a class of bilinear and linear dynamical systems with variable parameters, 13th Int. Conf. “Management of Large-Scale System Development” (MLSD) (2020), pp. 1–5. https://doi.org/10.1109/MLSD49919.2020.9247687

  30. Dudarenko, N.A., Nuiya, O.S., Serzhantova, M.V., Slita, O.V., and Ushakov, A.V., Matematicheskie osnovy teorii sistem: lektsionnyi kurs i praktikum. Uchebnoe posobie dlya vysshikh uchebnykh zavedenii (Mathematical Foundations of Systems Theory: a Lecture Course and Practical Work. Textbook for Higher Education Institutions), Ushakov, A.V., Ed., St. Petersburg: NIU ITMO, 2014. 2nd ed.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00673.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. B. Yadykin, I. A. Galyaev or Yu. A. Vershinin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadykin, I.B., Galyaev, I.A. & Vershinin, Y.A. On the Solution of Generalized Lyapunov Equations for a Class of Continuous Bilinear Time-Varying Systems. Autom Remote Control 83, 677–691 (2022). https://doi.org/10.1134/S0005117922050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922050022

Keywords

Navigation