Skip to main content
Log in

Spectral and Modal Methods for Studying Stability and Control of Electric Power Systems

  • reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper provides an overview of spectral and modal analysis methods for studying the stability of electric power systems (EPSs) and their control. Consideration is given to theoretical grounds of the methods and to the experience of their application for detecting the heterogeneity of the systems’ structure, identifying the coherency of generators’ motion, simplifying the mathematical model of the dynamics of EPSs, assessing their small-signal stability, and selecting the control actions to ensure it. The analysis of sub-Gramians for studying the EPS stability and other new directions in the development of the modal approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milano, F., Dörfler, F., Hug, G., et al.Foundations and Challenges of Low-Inertia Systems, in Proc. 20 Power Systems Computation Conf. (PSCC), Manchester, United Kingdom, June 11–15, 2018.

  2. Voropai, N. I. & Osak, A. B. Electric Power Systems of the Future. Energetich. Politika no. 5, 60–63 (2014).

    Google Scholar 

  3. Gorev, A. A. Perekhodnye protsessy v sinkhronnoi mashine (Transition Processes in a Synchronous Machine). (Gosenergoizdat, Moscow-Leningrad, 1950).

    Google Scholar 

  4. Zhdanov, P. S. Voprosy ustoichivosti elektricheskikh sistem (Issues of Electric Power Systems Stability). (Energiya, Moscow, 1989).

    Google Scholar 

  5. Kimbark, E. W. Power System Stability. Books I, II, III. (Wiley, New York, 1948).

    Google Scholar 

  6. Sylvester, J.Sur l’Eq. en matrices PX = XQ, Comptes Rendus de l’Acad. Sci., 1884.

  7. Lyapunov, A.Problème général de la stabilité du mouvement, Commun. Soc. Math. Kharkov, 1893.

  8. Saad, Y. Numerical Methods for Large Eigenvalue Problems, Society for Industrial and Applied Mathematics. (Wiley, New York, 2011).

    Book  Google Scholar 

  9. Porter, B. & Crossley, R. Modal Control. Theory and Applications. (Taylor and Fransis, London, 1972).

    MATH  Google Scholar 

  10. Barinov, V. A. & Sovalov, S. A. Analysis of Steady-State Stability of Electric Power Systems Using Eigenvalues of Matrices. Elektrichestvo no. 2, 8–15 (1983).

    Google Scholar 

  11. Venikov, V. A. Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh (Transient Electromechanical Processes in Electric Power Systems). (Visshaya Shkola, Moskow, 1985).

    Google Scholar 

  12. Pérez-Arriaga, I. J., Verghese, G. C. & Schweppe, F. C. Selective Modal Analysis with Applications to Electric Power Systems. Part I: Heuristic Introduction. IEEE Trans. Power Apparat. Syst. 101(no. 9), 3117–3125 (1982).

    Article  Google Scholar 

  13. Verghese, G. C., Pérez-Arriaga, I. J. & Schweppe, F. C. Selective Modal Analysis with Application to Electric Power Systems. Part II: The Dynamic Stability Problem. IEEE Trans. Power Apparat. Syst. 101(no. 9), 3126–3134 (1982).

    Article  Google Scholar 

  14. Pierre, J.W., Trudnowski, D., Donnelly, M., et al.Overview of System Identification for Power Systems from Measured Responses, IFAC Proc. Volumes, 2012, vol. 45, no. 16, pp. 989–1000.

  15. CIEE Final Project Report. Oscillation Detection and Analysis, 2010. Available at www.uc-ciee.org/ downloads/ODA Final Report.pdf [Accessed on 26 February 2018].

  16. Arnoldi, W. E. The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem. Quarterly Appl. Math. no. 9, 17–29 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L. & Semlyen, A. Application of Sparse Eigenvalue Techniques to the Small Signal Stability Analysis of Large Power Systems. IEEE Trans. Power Syst. 5(no. 2), 635–642 (1990).

    Article  Google Scholar 

  18. Angelidis, G. & Semlyen, A. Improved Methodologies for the Calculation of Critical Eigenvalues in Small Signal Stability Analysis. IEEE Trans. Power Syst. 11(no. 3), 1209–1217 (1996).

    Article  Google Scholar 

  19. Rommes, J. Arnoldi and Jacobi-Davidson Methods for Generalized Eigenvalue Problems Ax = λBx with Singular B. Math. Comput. 77(no. 262), 995–1015 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. Rommes, J., Martins, N. & Freitas, F. Computing Rightmost Eigenvalues for Small-Signal Stability Assessment of Large-Scale Power Systems. IEEE Trans. Power Syst. 25(no. 2), 929–938 (2010).

    Article  Google Scholar 

  21. Martins, N. The Dominant Pole Spectrum Eigensolver [for Power System Stability Analysis]. IEEE Trans. Power Syst. 12(no. 1), 245–254 (1997).

    Article  Google Scholar 

  22. Misrikhanov, M. Sh & Ryabchenko, V. N. Matrix Sign Function in the Problems of Analysis and Design of the Linear Systems. Autom. Remote Control 69(no. 2), 198–222 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. Pagola, F. L., Pérez-Arriaga, I. J. & Verghese, G. C. On Sensitivities, Residues, and Participations: Applications to Oscillatory Stability Analysis and Control. IEEE Trans. Power Syst. 4(no. 1), 278–285 (1989).

    Article  Google Scholar 

  24. Song, Y., Hill, D. J. & Liu, T. State-in-Mode Analysis of the Power Flow Jacobean for Static Voltage Stability. Int. J. Electric. Power Energy Syst. 105, 671–678 (2019).

    Article  Google Scholar 

  25. Power System Coherency and Model Reduction, Chow, J.H., Ed., Heidelberg: Springer, 2013.

  26. Singh, B., Sharma, N. K. & Tiwari, A. N. A Comprehensive Survey of Optimal Placement and Coordinated Control Techniques of FACTS Controllers in Multi-Machine Power System Environments. J. Electric. Eng. Technol 5(no. 1), 79–102 (2010).

    Article  Google Scholar 

  27. Genc, I., Schattler, H. & Zaborszky, J. Clustering the Bulk Power System with Applications Towards Hopf Bifurcation Related Oscillatory Instability. Electric Power Components Syst. 33(no. 2), 181–198 (2005).

    Article  Google Scholar 

  28. Hamdan, A. M. A. & Nayfeh, A. H. Measures of Modal Controllability and Observability for First and Second-Order Linear Systems. J. Guidance, Control, Dynam. 12(no. 3), 421–428 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. Tawalbeh, N. I. & Hamdan, A. M. Participation Factors, and Modal Mobility. Eng. Sci. 37(no. 2), 226–232 (2010).

    Google Scholar 

  30. Hashlamoun, W. A., Hassouneh, M. A. & Abed, E. H. New Results on Modal Participation Factors: Revealing a Previously Unknown Dichotomy. IEEE Trans. Autom. Control 54(no. 7), 1439–1449 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  31. Hamzi, B. & Abed, E. H. Local Modal Participation Analysis of Nonlinear Systems Using Poincare Linearization. Nonlin. Dyn. 99, 803–811 (2020).

    Article  MATH  Google Scholar 

  32. Vittal, V., Bhatia, N. & Fouad, A. A. Analysis of the Inter-Area Mode Phenomenon in Power Systems Following Large Disturbances. IEEE Trans. Power Syst. 6(no. 4), 1515–1521 (1991).

    Article  Google Scholar 

  33. Tian, T., Kestelyn, X. & Thomas, O. et al. An Accurate Third-Order Normal form Approximation for Power System Nonlinear Analysis. IEEE Trans. Power Syst. 33(no. 2), 2128–2139 (2018).

    Article  Google Scholar 

  34. Sanchez-Gasca, J. J., Vittal, V. & Gibbard, M. J. et al. Inclusion of Higher-Order Terms for Small-Signal (Modal) Analysis: Committee Report-Task Force on Assessing the Need to Include Higher-Order Terms for Small-Signal (Modal) Analysis. IEEE Trans. Power Syst. 20(no. 4), 1886–1904 (2005).

    Article  Google Scholar 

  35. Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlin. Sci. 25(no. 6), 1307–1346 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. Netto, M., Susuki, Y., and Mili, L.Data-Driven Participation Factors for Nonlinear Systems Based on Koopman Mode Decomposition, IEEE Control Syst. Lett., 2019. https://doi.org/10.1109/LCSYS. 2018.2871887

  37. Voronov, A. A. Ustoichivost’, upravlyaemost’, nablyudaemost’ (Stability, Controllability, and Observability). (Nauka, Moscow, 1979).

    MATH  Google Scholar 

  38. Godunov, S. K. Lektsii po sovremennym aspektam lineinoi algebry (Lectures on Modern Aspects of Linear Algebra). (Nauchnaya Kniga, Novosibirsk, 2002).

    Google Scholar 

  39. Ikramov, H. D. Chislennoe reshenie matrichnykh uravnenii (Numerical Solution of Matrix Equations). (Nauka, Moscow, 1984).

    MATH  Google Scholar 

  40. Daletsky, Yu. L. & Krein, M. G. Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions to Differential Equations in the Banach Space). (Nauka, Moscow, 1970).

    Google Scholar 

  41. Faddeev, D. K. & Faddeeva, V. N. Vychislinelanye metody lineinoi algebry (Computational Methods of Linear Algebra). (Fizmatgiz, Moscow, 1963).

    Google Scholar 

  42. Demidenko, G. V. Matrichnye uravneniya (Matrix Equations). (Novosib. Gos. Univ., Novosibirsk, 2009).

    Google Scholar 

  43. Polyak, B. T. & Shcherbakov, P. S. Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control). (Nauka, Moscow, 2002).

    Google Scholar 

  44. Zubov, N. E., E, Zybin, Yu., Mikrin, E. A., M, Misrikhanov, Sh. & Ryabchenko, V. N. General Analytical Forms for Solving Sylvester and Lyapunov Equations for Continuous and Discrete Dynamic Systems. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 1, 50–22 (2017).

    MATH  Google Scholar 

  45. Simoncini, V. Computational Methods for Linear Matrix Equations. SIAM Rev. 58(no. 3), 377–441 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  46. Shokoohi, S., Silverman, L. M. & Van Dooren, P. Linear Time-Variable Systems: Balancing and Model Reduction. IEEE Trans. Automat. Control AC-28(no. 8), 810–822 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  47. Verriest, E. & Kailath, T. On Generalized Balanced Realizations. IEEE Trans. Automat. Control AC-28(no. 8), 833–844 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  48. Gray, W.S. and Mesko, J.Energy Functions and Algebraic Gramians for Bilinear Systems, in Preprints of 4th IFAC Nonlinear Control Syst. Design Sympos., Enschede, The Netherlands, 1998.

  49. Benner, P. & Damm, T. Lyapunov Equations, Energy Functionals, and Model Order Reduction of Bilinear and Stochastic Systems. SIAM J. Control Optim. 49(no. 2), 686–711 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. Moore, B. C. Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction. IEEE Trans. Automat. Control AC-26, 17–32 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  51. Fernando, K. V. & Nicholson, H. On a Fundamental Property of the Cross-Gramian Matrix. IEEE Trans. Circuits Syst. CAS-31(no. 5), 504–505 (1984).

    Article  MATH  Google Scholar 

  52. Baur, U., Benner, P. & Feng, L. Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective. Archiv. Comput. Method. Eng. 21(no. 4), 331–358 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  53. Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (SIAM, Philadelphia, 2005).

    Book  MATH  Google Scholar 

  54. Yadykin, I. B. On Properties of Gramians of Continuous Control Systems. Autom. Remote Control 71(no. 6), 1011–1021 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  55. Yadykin, I. B., Iskakov, A. B. & Akhmetzyanov, A. V. Stability Analysis of Large-Scale Dynamical Systems by Sub-Gramian Approach. Int. J. Robust Nonlin. Control 24, 1361–1379 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  56. Yadykin, I. B. & Iskakov, A. B. Spectral Decomposition for the Solutions of Sylvester, Lyapunov, and Krein Equations. Dokl. Math. 95(no. 1), 103–107 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  57. Gamm, A. Z. & Golub, I. I. Sensory i slabye mesta elektroenergeticheskikh sistem (Sensors and Weak Points in Electric Power Systems). (SEI SO RAN, Irkutsk, 1996).

    Google Scholar 

  58. Voitov, O. N., Voropai, N. I. & Gamm, A. Z. et al. Analiz neodnorodnostei elektroenergeticheskikh sistem (Analysis of Heterogeneity of Electric Power Systems). (Nauka, Novosibirsk, 1999).

    Google Scholar 

  59. Abramenkova, N. A., Voropai, N. I. & Zaslavskaya, T. B. Structural Analysis of Electric Power Systems: In the Problems of Modeling and Synthesis. (Nauka, Novosibirsk, 1990).

    Google Scholar 

  60. Voropai, N. I., Gamm, A. Z., Golub, I. I. & Efimov, D. N. Background and Development of Studies on Heterogeneity and Weak Points in the Energy Systems. Systems Studies in Energy: Retrospective of Research Trends in SEI-ISEM. (Nauka, Novosibirsk, 2010).

    Google Scholar 

  61. Malyshev, A. N. Vvedenie v vychislitelanuyu lineinuyu algebru (Introduction into Computational Llinear Algebra). (Nauka, Novosibirsk, 1991).

    Google Scholar 

  62. Guseinov, F. G. Uproshchenie raschetnykh skhem elektricheskikh sistem (Simplification of Network Schemes of Electric Systems). (Energiya, Moscow, 1978).

    Google Scholar 

  63. Voropai, N. I. Uproshchenie matematicheskikh modelei dinamiki elektroenergeticheskikh sistem (Simplification of Mathematical Models of Electric Power System Dynamics). (Nauka, Novosibirsk, 1981).

    Google Scholar 

  64. Dorsey, J. & Schlueter, R. A. Global and Local Dynamic Equivalents Based on Structural Archetypes for Coherency. IEEE Trans. Power Apparat. Syst. 102(no. 6), 1793–1801 (1983).

    Article  Google Scholar 

  65. Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control, Eremia, M. and Shahidehpour, M., Eds., Hoboken: Wiley—IEEE Press, 2013.

  66. Stanton, K. M. Dynamic Energy Balance Studies for Simulation of Power-Frequency Transient. IEEE Trans. Power Apparat. Syst. 91(no. 1), 110–117 (1972).

    Article  Google Scholar 

  67. Kartvelishvili, N. A. & Galaktionov, Yu. I. Idealizatsiya slozhnykh dinamicheskikh sistem (The Idealization of Complex Dynamic Systems). (Nauka, Moscow, 1976).

    Google Scholar 

  68. Time-Scale Modeling of Dynamic Networks with Application to Power Systems, Chow,7D2J.H., Ed., New York: Lect. Notes Control Inf. Sci., 1982.

  69. Winkelman, J. K., Chow, J. H. & Avramovich, B. et al. An Analysis of Interarea Dynamics of Multimachine Systems. IEEE Trans. Power Apparat. Syst. 100(no. 2), 754–763 (1981).

    Article  Google Scholar 

  70. Peponides, G., Kokotovic, P. V. & Chow, J. H. Singular Perturbations and Time Scales in Nonlinear Models of Power Systems. IEEE Trans. Circuits Syst. 29(no. 11), 758–767 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  71. Stadler, J., Renner, H., and Koeck, K.An Inter-Area Oscillation Based Approach for Coherency Identification in Power Systems, in Proc. 18 Power Syst. Comput. Conf., Wroclaw, Poland, August 18–22, 2014.

  72. Kundur, P. Power System Stability and Control. (McGraw-Hill, New York, 1994).

    Google Scholar 

  73. Wu, J. Advances in k-Means Clustering: A Data Mining Thinking. (Springer, Heidelberg, 2012).

    Book  MATH  Google Scholar 

  74. Stadler, J. and Renner, H.Application of Dynamic REI Reduction, in Proc. 4 IEEE PES Innovat. Smart Grid Technol. Eur., Copenhagen, Denmark, October 6–9, 2013.

  75. Annakkage, U. D., Nair, N. K. C. & Liang, Yu et al. Dynamic System Equivalents: A Survey of Available Technique; IEEE PES Task Force on Dynamic Systems Equivalents. IEEE Trans. Power Delivery 27(no. 1), 411–420 (2012).

    Article  Google Scholar 

  76. Singh, R., Elizondo, M., and Lu, Sh.,AReview of Dynamic Generator Reduction Methods for Transient Stability Studies, in Proc. 2011 IEEE PES General Meeting, Detroit, Michigan, USA, July 24–28, 2011.

  77. Kim, H., Jang, G. & Song, K. Dynamic Reduction of Large-Scale Power Systems Using Relation Factor. IEEE Trans. Power Syst. 19(no. 3), 1696–1699 (2004).

    Article  Google Scholar 

  78. Milano, F. & Srivastava, K. Dynamic REI Equivalents for Short Circuit and Transient Stability Analyses. Electric Power Syst. Res. 79(no. 2), 878–887 (2009).

    Article  Google Scholar 

  79. Ramaswamy, G. N., Rouco, L., Filiatre, O. & Verghese, G. C. et al. Synchronic Modal Equivalencing (SME) for Structure-Preserving Dynamic Equivalents. IEEE Trans. Power Syst. 11(no. 1), 19–29 (1996).

    Article  Google Scholar 

  80. Paternina, M.R.A., Zamora, A., Chow, J.H., and Ramires, J.M.Power System Coherency Based on Modal Characteristics and Hierarchical Agglomerative Clustering, in Proc. 2017 IEEE Power Tech., Manchester, United Kingdom, June 18–22, 2017.

  81. Zhu, Q., Chen, J., Duan, X., Sun, X., Li, Y., and Shi, D.A Method for Coherency Identification Based on Singular Value Decomposition in Proc. IEEE PES General Meeting, Boston, Massachusets, USA, July 17–21, 2016.

  82. Zali, S.M. and Milanovic, J.V.Dynamic Equivalent Model of Distribution Network Cell Using Prony Analysis and Nonlinear Least Square Optimization, in Proc. 2009 IEEE Bucharest Power Tech., Bucharest, Romania, June 28–July 2, 2009.

  83. Misrikhanov, M. Sh & Ryabchenko, V. N. The Quadratic Eigenvalue Problem in Electric Power Systems. Autom. Remote Control 67(no. 5), 698–720 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  84. Misrikhanov, M. Sh & Sharov, Yu. V. Assessment of Disturbances Impact on Power System Stability. Vestn. MEI no. 5, 42–48 (2009).

    Google Scholar 

  85. Sharov, Yu. V. Nonlinear Modal Interaction in Electric Power Systems. Elektrichestvo no. 12, 13–20 (2016).

    Google Scholar 

  86. Sharov, Yu. V. On the Development of Methods for the Analysis of Steady-State Stability of Electric Power Systems. Elektrichestvo no. 1, 12–17 (2017).

    Article  Google Scholar 

  87. Sharov, Yu.V.Application of Modal Approach for Solving the Problem of Ensuring the Steady-State Stability of Electric Power Systems, Izv. Ross. Akad. Nauk, Energetika, 2017, no. 2, pp. 13–29.

  88. Etingov, P.V. and Voropai, N.I.Power System Stability Enhancement Using Advanced Automatic Technology, in Proc. Int. Conf. Advanced Power Syst. Autom. Protect., Jeju, Korea, April 24–27, 2007.

  89. Gaglioti, E., Iaria, A., Panasetsky, D., et al.Inter-Area Oscillations in the CT/Turkey and IPS/UPS Power Systems, in Proc. CIGRE Sympos. “Electric Power System for the Future—Integrating Supergrids and Microgrids,” Bologna, Italy, September 13–15, 2011.

  90. Shanechi, H. M., Pariz, N. & Vaahedi, E. General Nonlinear Modal Representation of Large Scale Power Systems. IEEE Trans. Power Syst. 18(no. 3), 1103–1109 (2003).

    Article  Google Scholar 

  91. Cao, J., Du, W. & Wang, H. et al. A Novel Emergency Damping Control to Suppress Power System Inter-Area Oscillations. IEEE Trans. Power Syst. 28(no. 3), 3165–3173 (2013).

    Article  Google Scholar 

  92. Chompoobutrgool, Y. & Vanfretti, L. Identification of Power System Dominant Inter-Area Oscillation Paths. IEEE Trans. Power Syst. 28(no. 3), 2798–2807 (2013).

    Article  Google Scholar 

  93. Pal, A. and Thorp, S.Co-Ordinated Control of Inter-Area Oscillations Using SMA and LMI, in Proc. 2012 IEEE PES Innovat. Smart Grid Technologies (ISGT). https://doi.org/10.1109/ISGT.2012. 6175535

  94. Gao, B., Morison, G. & Kundur, P. Voltage Stability Evaluation Using Modal Analysis. IEEE Trans. Power Syst. 7(no. 4), 1529–1542 (1992).

    Article  Google Scholar 

  95. Yuan-Yih, Hsu & Chern-Lin, Chen Identification of Optimum Location for Stabilizers Application Using Participation Factors. IEE Proc. part C 134(no. 3), 238–244 (1987).

    Google Scholar 

  96. Mansour, Y., Xu, W., Alvarado, F. & Rinzin, Ch SVC Placement Using Critical Modes of Voltage Stability. IEEE Trans. Power Syst. 9(no. 2), 757–763 (1994).

    Article  Google Scholar 

  97. Farsangi, M. M., Nezamabadi-pour, H., Song, Y.-H. & Lee, K. Yu Placement of SVCs and Selection of Stabilizing Signals in Power Systems. IEEE Trans. Power Syst. 22(no. 3), 1061–1071 (2007).

    Article  Google Scholar 

  98. Sánchez-García, R. J., Fennelly, M., Norris, S., Wright, N., Niblo, G., Brodzki, J. & Bialek, J. W. Hierarchical Spectral Clustering of Power Grids. IEEE Trans. Power Syst. 29(no. 5), 2229–2237 (2014).

    Article  Google Scholar 

  99. Wang, C., Zhang, B., Hao, Z., Shu, J., Li, P. & Bo, Z. A Novel Real-Time Searching Method for Power System Splitting Boundary. IEEE Trans. Power Syst. 25(no. 4), 1902–1909 (2010).

    Article  Google Scholar 

  100. Zhu, Z., Geng, G. & Jiang, Q. Power System Dynamic Model Reduction Based on Extended Krylov Subspace Method. IEEE Trans. Power Syst. 31(no. 6), 4483–4494 (2016).

    Article  Google Scholar 

  101. Dobrowolski, J., Korba, P., Segundo, F.R., and Sattinger, W.Centralized Wide-Area Damping Controller for Power System Oscillation Problems, HAL Id: hal01975194, https://hal-iogs.archives-ouvertes.fr/hal-01975194. Submitted on January 9, 2019.

  102. Belyaev, A.N., Yadykin, I.B., Smolovik, S.V., Spiridonov, S.V., and Grigoriev, A.A.A Robust Adaptive Controller for Damping the Inter-Area Oscillations in an Electric Power System, Elektrichestvo, 2011, no. 6, pp. 2–10.

  103. Du, W., Fu, Q., Wang, H. & Wang, Y. Concept of Modal Repulsion for Examining the Subsynchronous Oscillations Caused by Wind Farms in Power Systems. IEEE Trans. Power Syst. 34(no. 1), 518–526 (2019).

    Article  Google Scholar 

  104. Yadykin, I. B., Kataev, D. E., Iskakov, A. B. & Shipilov, V. K. Characterization of Power Systems Near their Stability Boundary Using the Sub-Gramian Method. Control Eng. Practice 53, 173–183 (2016).

    Article  Google Scholar 

  105. Yadykin, I. B. & Iskakov, A. B. Spectral Decompositions for the Solutions of Lyapunov Equations for Bilinear Dynamical Systems. Dokl. Math. 100, 501–504 (2019).

    Article  MATH  Google Scholar 

  106. Damm, T. Direct Methods and ADI-Preconditioned Krylov Subspace Methods for Generalized Lyapunov Equations. Numer. Linear Algebra Appl. 15(no. 9), 853–871 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  107. Yadykin, I. B. & Iskakov, A. B. Energy Approach to Stability Analysis of the Linear Stationary Dynamic Systems. Autom. Remote Control 77(no. 12), 2132–2149 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  108. Yadykin, I. B., Grobovoy, A. A., Iskakov, A. B., Kataev, D. E. & Khmelik, M. S. Stability Analysis of Electric Power Systems Using Finite Gramians. IFAC-PapersOnLine 48(no. 30), 548–553 (2015).

    Article  Google Scholar 

  109. Morzhin, Yu. N., Yadykin, I. B. & Bahtadze, N. N. A Multi-Agent Intelligent Immune System IES AAS. Avtomatiz. Promyshl. no. 4, 57–60 (2012).

    Google Scholar 

  110. Yadykin, I., Lototsky, V., Bakhtadze, N., Maximov, Eu & Nikulina, I. Soft Sensors of Power Systems Stability Based on Predictive Models of Dynamic Discrete Bilinear Systems. IFAC-PapersOnLine 51(no. 11), 897–902 (2018).

    Article  Google Scholar 

  111. Zhang, L. & Lam, J. On H2 Model Order Reduction of Bilinear Systems. Automatica 38(no. 2), 205–216 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  112. Vassilyev, S. N., Yadykin, I. B., Iskakov, A. B., Kataev, D. E., Grobovoy, A. A. & Kiryanova, N. G. Participation Factors and Sub-Gramians in the Selective Modal Analysis of Electric Power Systems. IFAC-PapersOnLine 50(no. 1), 14806–14811 (2017).

    Article  Google Scholar 

  113. Iskakov, A.B. and Yadykin, I.B.Lyapunov Modal Analysis and Participation Factors with Applications to Small-Signal Stability of Power Systems, arXiv:1909.02227 [math.OC], 2019.

  114. Po-Hsu, Huang, Vorobev, P., Al Hosani, M., Kirtley, J. L. & Turitsyn, K. Plug-and Play Compliant Control for Inverter-Based Microgrids. IEEE Trans. Power Syst. 34(no. 4), 2901–2913 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropai, N., Golub, I., Efimov, D. et al. Spectral and Modal Methods for Studying Stability and Control of Electric Power Systems. Autom Remote Control 81, 1751–1774 (2020). https://doi.org/10.1134/S000511792010001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511792010001X

Keywords

Navigation