Skip to main content
Log in

Stationary Characteristics of an Unreliable Single-Server Queueing System with Losses and Preventive Maintenance

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2020

This article has been updated

Abstract

This paper considers an unreliable restorable single-server queueing system with losses in which server failures may occur during operation. The random variables describing the system have general distributions. For increasing the efficiency of this system, it is proposed to carry out preventive maintenance of the server as soon as the accumulated operating time exceeds an upper permissible threshold. A semi-Markov model of the system’s evolution over time is constructed. The explicit-form expressions for the final probabilities and mean sojourn times of the system in different physical states are derived using the stationary distribution of the embedded Markov chain. The frequency of preventive maintenance of the server is optimized via maximizing the average specific profit and minimizing the average specific costs of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Gnedenko, B. V. & Kovalenko, I. N. Vvedenie v teoriyu massovogo obsluzhivaniya (Introduction to Queueing Theory). (Nauka, Moscow, 1987).

    MATH  Google Scholar 

  2. Bocharov, P. P. & Pechinkin, A. V. Teoriya massovogo obsluzhivaniya (Queueing Theory). (Ross. Univ. Druzhby Narodov, Moscow, 1995).

    Google Scholar 

  3. Pechinknin, A. V. & Chaplygin, V. V. Stationary Characteristics of the SM/MSP/n/r Queuing System. Autom. Remote Control 65(no. 9), 1429–1443 (2004).

    Article  MathSciNet  Google Scholar 

  4. Krishna Kumar, B., Arivudainambi, D. & Vijayakumar, A. An M/G/1/1 Queue with Unreliable Server and no Waiting Capacity. Inf. Manage. Sci. 13, 35–50 (2002).

    MathSciNet  MATH  Google Scholar 

  5. Wu, C.-H., Lee, W.-C., Ke, J.-C. & Liu, T.-H. Optimization Analysis of an Unreliable Multi-server Queue with a Controllable Repair Policy. Comput. Oper. Res. no. 49, 83–96 (2014).

    Article  MathSciNet  Google Scholar 

  6. Özkan, E. & Kharoufeh, J. P. Optimal Control of a Two-server Queuing System with Failures. Prob. Eng. Inform. Sci 4(no. 28), 489–527 (2014).

    Article  Google Scholar 

  7. Peschansky, A. I. A Semi-Markov Model of a Single-Server Queueing System with Losses and an Unreliable Restorable Channel. Dinamich. Sist. 7(35)(no. 1), 53–61 (2017).

    Google Scholar 

  8. Peschansky, A. I. Semi-Markov Models of One-Server Loss Queues with Recurrent Input. (LAP LAMPERT Academic Publishing, Saarbrücken, 2013).

    Google Scholar 

  9. Peschansky, A. I. & Kovalenko, A. I. A Semi-Markov Model of a Single-Server Queueing System with Maintenance of an Unreliable Channel, in Optimizatsiya proizvodstvennykh protsessov. Optimization of Production Processes 15, 63–70 (2014).

    Google Scholar 

  10. Peschansky, A. I. & Kovalenko, A. I. On a Strategy for the Maintenance of an Unreliable Channel of a One-Server Loss Queue. Automatic Control Comput. Sci. 50(no. 6), 397–407 (2016).

    Article  Google Scholar 

  11. Peschansky, A. I. & Kovalenko, A. I. A Semi-Markov Model for Maintenance of an Unreliable Single-Server Queueing System with Losses and Hidden Failure. Sb. Nauchn. Tr. Vestn. Sevastopol. Nats. Tekh. Univ., Avtomatiz. Protses. Upravlen. 147, 64–72 (2014).

    Google Scholar 

  12. Peschansky, A. I. & Kovalenko, A. I. Semi-Markov Model of a Single-Server Queue with Losses and Maintenance of an Unreliable Server. Cybern. Syst. Anal. 51(no. 4), 632–643 (2015).

    Article  MathSciNet  Google Scholar 

  13. Peschansky, A. I. & Kovalenko, A. I. A Semi-Markov Model for an Unreliable Single-Line Queueing System with Losses and Different Restoration Types. Autom. Remote Control 77(no. 12), 2192–2204 (2016).

    Article  Google Scholar 

  14. Korolyuk, V. S. & Turbin, A. F. Protsessy markovskogo vosstanovleniya v zadachakh nadezhnosti sistem (Markovian Restoration Processes in System Reliability Problems). (Naukova Dumka, Kiev, 1982).

    MATH  Google Scholar 

  15. Korlat, A. N., Kuznetsov, V. N. & Novikov, M. I. et al. Polumarkovskie modeli vosstanavlivaemykh sistem i sistem massovogo obsluzhivaniya (Semi-Markov Models of Restorable Systems and Queueing Systems). (Shtiintsa, Kishinev, 1991).

    MATH  Google Scholar 

  16. Beichelt, F. & Franken, P. Zuverlässigkeit und Instanphaltung, Mathematische Methoden. (VEB Verlag Technik, Berlin, 1983).

    Google Scholar 

  17. Kashtanov, V. A. & Medvedev, A. I. Teoriya nadezhnosti slozhnykh sistem (Reliability Theory of Complex Systems). (European Quality Center, Moscow, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Peschansky.

Appendix

Appendix

Proof of Theorem 1. The system of equations

$$\rho (B)=\int_{E}\rho (dx)P(x,B)$$

for the stationary distribution ρ( ⋅ ) of the EMC \(\left\{{S}_{n},\,n\ge 0\right\}\) with the transition probabilities P(x, B) has the form

$$\begin{array}{cl}\rho (0xuv)=\mathop{\int}\limits_{0}^{v}f(t){v}_{g}(t,x)\rho (1,t+u,v-t)dt+{\rho }_{1}f(v){v}_{g}(v,x)\varphi (v+u),\\ \rho (1uv)=\mathop{\int}\limits_{0}^{\infty }\rho (0xuv)dx,\\ \rho (3x)=\mathop{\int}\limits_{0}^{\tau }{v}_{g}(t,x)\overline{F}(t)dt\mathop{\int}\limits_{t}^{\infty }\rho (1u,\tau -t)du+{\rho }_{1}\overline{F}(\tau ){v}_{g}(\tau ,x)\overline{\Phi }(\tau ),\\ \rho (2x)=\mathop{\int}\limits_{0}^{\tau }{v}_{g}(t,x)\overline{F}(t)dt\mathop{\int}\limits_{t}^{\tau }\rho (1t,v-t)dv+{\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{F}(t){v}_{g}(t,x)\varphi (t)dt,\\ \rho (0x)=\mathop{\int}\limits_{0}^{\infty }{\psi }_{{\rm{pr}}}(t)\rho (3,t+x)dt+\mathop{\int}\limits_{0}^{\infty }{\psi }_{{\rm{pr}}}(t)dt\mathop{\int}\limits_{0}^{t}{v}_{g}(t-s,x)\rho (3s)ds\\ +\mathop{\int}\limits_{0}^{\infty }{\psi }_{{\rm{em}}}(t)\rho (2,t+x)dt+\mathop{\int}\limits_{0}^{\infty }{\psi }_{{\rm{em}}}(t)dt\mathop{\int}\limits_{0}^{t}{v}_{g}(t-s,x)\rho (2s)ds,\\ {\rho }_{1}=\mathop{\int}\limits_{0}^{\infty }\rho (0x)dx.\end{array}$$

Eliminate the function ρ(0xuv) from the first two equations of the system to obtain the following restoration equation for the density ρ(1uv) in the variable v:

$$\rho (1uv)={\rho }_{1}f(v)\varphi (u+v)+\mathop{\int}\limits_{0}^{v}f(t)\rho (1,t+u,v-t)dt.$$

The solution of this equation is ρ(1uv) = ρ1hf(v)φ(u + v). The expressions for the other density functions are derived using the properties of the density functions of the restoration function and the direct residual restoration time. The stationary probability ρ1 is determined from the normalization condition. The proof of Theorem 1 is complete.

Proof of Theorem 2. The limiting values \({p}_{i}^{* }\) of the transition probabilities of the semi-Markov process S(t), t ≥ 0, are given by the relations [14, 15]

$${p}_{i}^{* }=\mathop{{\rm{lim}}}\limits_{t\to \infty }\Phi (t,x,{E}_{i})=\int_{{E}_{i}}m(x)\rho (dx){\left[\int_{E}m(x)\rho (dx)\right]}^{-1},\quad i=\overline{0,3}.$$

In view of the stationary distribution of the EMC (1), the mean sojourn times

$$\begin{array}{rcl}{\rm{M}}{\theta }_{1}&=&\mathop{\int}\limits_{0}^{\tau }\overline{F}(t)\overline{\Phi }(t)dt,\quad {\rm{M}}{\theta }_{1uv}=\mathop{\int}\limits_{0}^{u\wedge (\tau -v)}\overline{F}(t)dt,\\ {\rm{M}}{\theta }_{2x}&=&{\rm{M}}{\sigma }_{{\rm{em}}};\quad {\rm{M}}{\theta }_{3x}={\rm{M}}{\sigma }_{{\rm{pr}}};\quad M{\theta }_{oxuv}=M{\theta }_{0x}=x\end{array}$$

in different states of the system, and the identity Mβt = Mβ(1 + Hg(t)) − t, finally write

$$\begin{array}{cl}\int_{{E}_{1}}m(x)\rho (dx)={\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{F}(t)\overline{\Phi }(t)dt+{\rho }_{1}\mathop{\int}\limits_{0}^{\tau }{h}_{f}(v)dv\mathop{\int}\limits_{0}^{\infty }\varphi (u+v)du\mathop{\int}\limits_{0}^{u\wedge (\tau -v)}\overline{F}(t)dt\\ ={\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{F}(t)\overline{\Phi }(t)dt+{\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{\Phi }(s)ds\mathop{\int}\limits_{0}^{s}{h}_{f}(t)\overline{F}(s-t)dt={\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{\Phi }(t)dt={\rho }_{1}{\rm{M}}(\gamma \wedge \tau );\\ \int_{{E}_{2}}m(x)\rho (dx)={\rm{M}}{\sigma }_{{\rm{em}}}\mathop{\int}\limits_{0}^{\infty }\rho (2x)dx={\rho }_{1}{\rm{M}}{\sigma }_{{\rm{em}}}\Phi (\tau )={\rho }_{1}{\rm{M}}{\sigma }_{{\rm{em}}}P(\gamma <\tau );\\ \int_{{E}_{3}}m(x)\rho (dx)={\rm{M}}{\sigma }_{{\rm{pr}}}\mathop{\int}\limits_{0}^{\infty }\rho (3x)dx={\rho }_{1}{\rm{M}}{\sigma }_{{\rm{pr}}}\overline{\Phi }(\tau )={\rho }_{1}{\rm{M}}{\sigma }_{{\rm{pr}}}P(\gamma >\tau );\\ \int_{{E}_{0}}m(x)\rho (dx)={\rho }_{1}{\rm{M}}\beta \left[{\overline{N}}_{{\rm{ser}}}(\tau )+{\overline{N}}_{{\rm{los}}}^{{\rm{ser}}}(\tau )+{\overline{N}}_{{\rm{los}}}^{p}(\tau )+{\overline{N}}_{{\rm{los}}}^{a}(\tau )\right]\\ -{\rho }_{1}\mathop{\int}\limits_{0}^{\tau }\overline{\Phi }(t)dt-{\rho }_{1}\overline{\Phi }(\tau ){\rm{M}}{\sigma }_{{\rm{pr}}}-{\rho }_{1}\Phi (\tau ){\rm{M}}{\sigma }_{{\rm{em}}};\\ \int_{E}m(x)\rho (dx)={\rho }_{1}{\rm{M}}\beta \left[{\overline{N}}_{{\rm{ser}}}(\tau )+{\overline{N}}_{{\rm{los}}}^{{\rm{ser}}}(\tau )+{\overline{N}}_{{\rm{los}}}^{p}(\tau )+{\overline{N}}_{{\rm{los}}}^{a}(\tau )\right].\end{array}$$

The proof of Theorem 2 is complete.

Proof of Theorem 3. The mean sojourn times T(Ei) in the states Ei are given by the relations [14, 15]

$$T({E}_{i})=\int_{{E}_{i}}m(x)\rho (dx){\left[\int_{E\backslash {E}_{i}}\rho (dx)P(x,{E}_{i})\right]}^{-1},\quad i=\overline{0,3}.$$
(A.1)

Taking into account the transition probabilities and the stationary distribution of the EMC (1), the integrals in the denominators of (A.1) can be transformed to

$$\begin{array}{cl}\int_{E\ \backslash {E}_{1}}\rho (dx)P(x,{E}_{1})=\mathop{\int}\limits_{0}^{\infty }\rho (0x)dx+\mathop{\int}\limits_{0}^{\tau }dv\mathop{\int}\limits_{0}^{\infty }du\mathop{\int}\limits_{0}^{\infty }\rho (0xuv)dx\\ ={\rho }_{1}+{\rho }_{1}\mathop{\int}\limits_{0}^{\tau }{h}_{f}(x)\ \overline{\Phi }(x)\ dx={\rho }_{1}\left[1+{\overline{N}}_{{\rm{ser}}}(\tau )\right];\\ \int_{E\ \backslash {E}_{2}}\rho (dx)P(x,{E}_{2})=\int_{{E}_{2}}\rho (dx)P(x,E\ \backslash {E}_{2})=\mathop{\int}\limits_{0}^{\infty }\rho (2x)dx={\rho }_{1}\Phi (\tau );\\ \int_{E\ \backslash {E}_{3}}\rho (dx)P(x,{E}_{3})=\int_{{E}_{3}}\rho (dx)P(x,E\ \backslash {E}_{3})=\mathop{\int}\limits_{0}^{\infty }\rho (3x)dx={\rho }_{1}\overline{\Phi }(\tau );\\ \int_{E\ \backslash {E}_{0}}\rho (dx)P(x,{E}_{0})=\int_{{E}_{0}}\rho (dx)P(x,E\ \backslash {E}_{0})\\ =\mathop{\int}\limits_{0}^{\infty }\rho (0x)dx+\mathop{\int}\limits_{0}^{\tau }dv\mathop{\int}\limits_{0}^{\infty }du\mathop{\int}\limits_{0}^{\infty }\rho (0xuv)dx={\rho }_{1}\left[1+{\overline{N}}_{{\rm{ser}}}(\tau )\right].\end{array}$$

The proof of Theorem 3 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peschansky, A. Stationary Characteristics of an Unreliable Single-Server Queueing System with Losses and Preventive Maintenance. Autom Remote Control 81, 1243–1257 (2020). https://doi.org/10.1134/S0005117920070061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920070061

Keywords

Navigation