Skip to main content
Log in

Optimal Rotation of the Orbit Plane of a Variable Mass Spacecraft in the Central Gravitational Field by Means of Orthogonal Thrust

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

With the use of quaternions and the maximum principle, we solve the optimal orbit transfer problem for a variable-mass spacecraft to a given plane in a nonlinear setting. The motion control of the spacecraft is carried out with the help of a jet thrust, bounded in absolute value and orthogonal to the plane of the osculating spacecraft orbit. We take into account the change in mass of the spacecraft due to the consumption of the working fluid in the control process. The functional that determines the quality of the control process is a linear convolution with weight factors for two criteria: time and total thrust impulse spent on the control process.

We provide an exposition of the theory of the problem’s solution. We show results of optimal control calculations for cases when both criteria are simultaneously taken into account in the minimized combined quality functional of the control process, and for cases when only the total thrust impulse is minimized. We obtain examples of optimal control with up to 192 passive and active stages. We also establish optimal control laws for the rotation of the spacecraft’s orbital plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics. Main Problems and Methods), Moscow: Nauka, 1968.

    Google Scholar 

  2. Abalakin, V.K., Aksenov, E.P., Grebennikov, E.A., et al., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (Handbook of Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1976.

    Google Scholar 

  3. Kopnin, Yu.M., On the Problem of Orbit Plane Rotation for a Satellite, Kosm. Issled., 1965, vol. 3, no. 4, pp. 22–30.

    Google Scholar 

  4. Lebedev, V.N., Raschet dvizheniya kosmicheskogo apparata s maloi tyagoi (Computation of a Low Thrust Spacecraft Motion), Moscow: Vychisl. Tsentr Akad. Nauk SSSR, 1968.

    Google Scholar 

  5. Borshchevskii, M.Z. and Ioslovich, M.V., On the Satellite Orbit Rotation Problem with Jet Thrust, Kosm. Issled., 1969, vol. 7, no. 6, pp. 8–15.

    Google Scholar 

  6. Grodzovskii, G.L., Ivanov, Yu.N., and Tokarev, V.V., Mekhanika kosmicheskogo poleta. Problemy optimizatsii (Mechanics of a Space Flight. Optimization Problems), Moscow: Nauka, 1975.

    Google Scholar 

  7. Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Foundations of Space Flight Mechanics), Moscow: Nauka, 1990.

    Google Scholar 

  8. Ishkov, S.A. and Romanenko, V.A., Construction and Correction of a High-Ellipse Orbit for an Earth Satellite with a Low Thrust Engine, Kosm. Issled., 1997, vol. 35, no.3, pp. 287–296.

    Google Scholar 

  9. Ivanov, N.M. and Lysenko, L.N., Ballistika i navigatsiya kosmicheskikh apparatov (Ballistics and Navigation of Spacecraft), Moscow: Drofa, 2004.

    Google Scholar 

  10. Chernyavskii, G.M., Bartenev, V.A., and Malyshev, V.A., Upravlenie orbitoi statsionarnogo sputnika (Control over the Orbit of a Stationary Satellite), Moscow: Mashinostroenie, 1984.

    Google Scholar 

  11. Reshetnev, M.F., Lebedev, A.A., Bartenev, V.A., et al., Upravlenie i navigatsiya iskusstvennykh sputnikov Zemli na okolokrugovykh orbitakh (Control and Navigation of Man-Made Earth Satellites on Near-Round Orbits), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  12. Bartenev, V., Malyshev, V., Rayevsky, V., et al., Altitude and Orbit Control Systems of Russian Communication, Geodesic and Navigation Spacecraft, Space Technol., 1999, vol. 19, no. 3–4, pp. 135–147.

    Google Scholar 

  13. Testoyedov, N., Rayevsky, V., Somov, Ye., et al., Altitude and Orbit Control Systems of Russian Communication, Navigation and Geodesic Satellites: History, Present and Future, IFAC PapersOnLine, 2017, vol. 50, no. 1, pp. 6422–6427.

    Article  Google Scholar 

  14. Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, New York: AIAA, 1987.

    MATH  Google Scholar 

  15. Huntington, G.T. and Rao, A.V., Optimal Reconfiguration of a Tetrahedral Formation via a Gauss Pseudospectral Method, Proc. AAS/AIAA Astrodynam. Special. Conf., AS 05-338, 2005, pp. 1–22.

    Google Scholar 

  16. Chelnokov, Yu.N., Applications of Quaternions in the Theory of Orbital Motion of a Man-Made Satellite. Part 2, Kosm. Issled., 1993, vol. 31, no. 3, pp 3–15.

    Google Scholar 

  17. Chelnokov, Yu.N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya. Geometriya i kinematika dvizheniya (Quaternion and Biquaternion Models and Methods of Solid Body Mechanics and Their Applications), Moscow: Fizmatlit, 2006.

    Google Scholar 

  18. Chelnokov, Yu.N., Kvaternionnye modeli i metody dinamiki, navigatsii i upravleniya dvizheniem (Quaternion Models and Methods for Dynamics, Navigation, and Motion Control), Moscow: Fizmatlit, 2011.

    Google Scholar 

  19. Chelnokov, Yu.N., Optimal Reorientation of a Spacecraft Orbit with Jet Thrust Orthogonal to the Orbit Plane, Prikl. Mat. Mekh., 2012, vol. 76, no. 6, pp. 897–914.

    MathSciNet  MATH  Google Scholar 

  20. Chelnokov, Yu.N., Quaternion Regularization in Celestial Mechanics and Astrodynamics and Control over Trajectory Motion. II, Kosm. Issled., 2014, vol. 52, no. 4, pp. 322–336.

    Google Scholar 

  21. Sergeev, D.A. and Chelnokov, Yu.N., Optimal Control over the Orientation of a Spacecraft Orbit, in Mat. Mekh., Sb. Nauchn. Tr., Saratov: Saratov Univ., 2001, no. 3, pp. 185–188.

    Google Scholar 

  22. Pankratov, I.A., Sapunkov, Ya.G., and Chelnokov, Yu.N., On One Problem of Optimal Reorientation of a Spacecraft Orbit, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Informat., 2012, vol. 12, no. 3, pp. 87–95.

    MATH  Google Scholar 

  23. Sapunkov, Ya.G. and Chelnokov, Yu.N., A Study of the Optimal Reorientation Problem for a Spacecraft Orbit Via Bounded or Impulse Jet Thrust Orthogonal to the Orbit Plane. Part 1, Mekhatron., Avtomatiz., Upravlen., 2016, vol. 17, no. 8, pp. 567–575.

    Article  Google Scholar 

  24. Sapunkov, Ya.G. and Chelnokov, Yu.N., A Study of the Optimal Reorientation Problem for a Spacecraft Orbit Via Bounded or Impulse Jet Thrust Orthogonal to the Orbit Plane. Part 2, Mekhatron., Avtomatiz., Upravlen., 2016, vol. 17, no. 9, pp. 633–643.

    Article  Google Scholar 

  25. Deprit, A., Ideal Frames for Perturbed Keplerian Motions, Celestial Mechan., 1976, vol. 13, no. 2, pp. 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  26. Brumberg, V.A., Analiticheskie algoritmy nebesnoi mekhaniki (Analytic Algorithms in Celestial Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  27. Branets, V.N. and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Applications of Quaternions to Solid Body Orientation Problems), Moscow: Nauka, 1973.

    Google Scholar 

  28. Branec, V.N. and Shmyglevskii, I.P., Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh sistem (Introduction to the Theory of Platform-Free Inertial Navigation Systems), Moscow: Nauka, 1992.

    Google Scholar 

  29. Chelnokov, Yu.N., Optimal Reorientation of a Spacecraft Orbit via Jet Thrust Orthogonal to the Orbit Plane, in Mat. Mekhan., Sb. Nauchn. Tr., Saratov: Saratov Univ., 2006, no. 8, pp. 231–234.

    Google Scholar 

  30. Pankratov, I.A., Sapunkov, Ya.G., and Chelnokov, Yu.N., Solving the Optimal Reorientation Problem for a Spacecraft Orbit with Quatertion Equations on the Orientation of the Orbital Coordinate Systems, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Informat., 2013, vol. 13, no. 1-1, pp. 84–92.

    MATH  Google Scholar 

  31. Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal Motions of Spacecraft with High Thrust Engines), Moscow: Nauka, 1976.

    Google Scholar 

  32. Moiseev, N.N., Elementy teorii optimal’nykh sistem (Elements of the Theory of Optimal Systems), Moscow: Nauka, 1975.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Chelnokov.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 8, pp. 87–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapunkov, Y.G., Chelnokov, Y.N. Optimal Rotation of the Orbit Plane of a Variable Mass Spacecraft in the Central Gravitational Field by Means of Orthogonal Thrust. Autom Remote Control 80, 1437–1454 (2019). https://doi.org/10.1134/S000511791908006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791908006X

Keywords

Navigation