Skip to main content
Log in

On Some Approaches to Find Nash Equilibrium in Concave Games

  • Mathematical Game Theory and Applications
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers finite-dimensional concave games, i.e., noncooperative n-player games in which the objective functionals are concave in their “own” variables. For such games, we investigate the design problem of numerical search algorithms for Nash equilibrium that have guaranteed convergence without additional requirements on the objective functionals such as convexity in the “other” variables or similar hypotheses (weak convexity, quasiconvexity, etc.). Two approaches are described as follows. The first approach, being obvious enough, relies on the Hooke-Jeeves method for residual function minimization and acts as a “standard” for comparing the efficiency of alternative numerical solution methods. To some extent, the second approach can be regarded as “an intermediate” between the relaxation algorithm and the Hooke-Jeeves method of configurations (with proper consideration of all specifics of the objective functions). A rigorous proof of its convergence is the main result of this paper, for the time being in the case of one-dimensional sets of players strategies yet under rather general requirements to objective functionals. The results of some numerical experiments are presented and discussed. Finally, a comparison with other well-known algorithms is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleeva, S.R. and Yakubovich, E.O., Equilibrium Programming and Its Application in Searching for Nash Equilibrium, Vestn. Chelyabinsk. Gos. Univ., 2013, vol. 16, no. 28(319), pp. 6–20.

    Google Scholar 

  2. Antipin, A.S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii (Gradient and Extragradient Approaches to Bilinear Equilibrium Programming), Moscow: Vych. Tsentr Ross. Akad. Nauk, 2002.

    Google Scholar 

  3. Belen’kii, V.Z., Volkonskii, V.A., Ivankov, S.A., et al., Iterativnye metody v teorii igr i programmirovanii (Iterative Methods in Game Theory and Programming), Moscow: Fizmatlit, 1974.

    MATH  Google Scholar 

  4. Boldyrev, V.I., Piecewise Linear Approximation Method for Solving Optimal Control Problems, Differ. Uravn. Protsess. Upravlen., 2004, no. 1, pp. 28–123.

  5. Buzinov, A.A., Methods of Cuts in Linear Optimal Performance, Cand. Sci. (Phys.-Math.) Dissertation, Yaroslavl: Yaroslavsk. Gos. Univ., 2000.

    Google Scholar 

  6. Vasin, A.A. and Morozov, V.V., Teoriya igr i modeli matematicheskoi ekonomiki (Game Theory and Mathematical Economics Models), Moscow: MAKS Press, 2005.

    Google Scholar 

  7. Vasin, A.A., Krasnoshchekov, P.S., and Morozov, V.V., Issledovanie operatsii (Operations Research), Moscow: Akademiya, 2008.

    Google Scholar 

  8. Vorob’ev, N.N., Teoriya igr dlya ekonomistov-kibernetikov (Game Theory for Economists-Cyberneticians), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  9. Gol’dshtein, A.L., Optimizatsiya v srede MATLAB (Optimization in MATLAB), Perm: Perm. Natsional. Issled. Politekh. Univ., 2015.

    Google Scholar 

  10. Evtushenko, Yu.G., Metody resheniya ekstremal’nykh zadach i ikh primenenie v sistemakh optimizatsii (Methods for Solving Extremum Problems and Their Application in Optimization Systems), Moscow: Nauka, 1982.

    MATH  Google Scholar 

  11. Evtushenko, Yu.G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie (Optimization and Quick Automatic Differentiation), Moscow: Vych. Tsentr Ross. Akad. Nauk, 2013.

    Google Scholar 

  12. Elsakov, S.M. and Shiryaev, V.I., Homogeneous Algorithms of Multiextremum Optimization for Time-Consuming Objective Functions, Vychisl. Metody Programm., 2011, vol. 12, no. 1, pp. 48–69.

    Google Scholar 

  13. Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1984, 3rd ed. Translated under the title Functional Analysis, Oxford: Pergamon, 1982.

    MATH  Google Scholar 

  14. Levin, A.Yu., An Algorithm for Minimizing Convex Functions, Dokl. Akad. Nauk SSSR, 1965, vol. 160, no. 6, pp. 1244–1247.

    MathSciNet  Google Scholar 

  15. Minarchenko, I.M., Local Search in Quadratic Two-Person Game, Izv. Irkutsk. Gos. Univ., Ser. Mat., 2016, vol. 18, pp. 60–73.

    MATH  Google Scholar 

  16. Nenakhov, E.I., One Algorithm for Solving a System of Linear Inequalities, Teor. Optimal. Rishen., 2005, no. 4, pp. 42–48.

  17. Pisaruk, N.N., Vvedenie v teoriyu igr (Introduction to Game Theory), Minsk: Belorus. Gos. Univ., 2015.

    Google Scholar 

  18. Piyavskii, S.A., An Algorithm for Finding the Absolute Extremum of a Function, USSR Comput. Math. Math. Phys., 1972, vol. 12, no. 4, pp. 57–67.

    Article  MathSciNet  Google Scholar 

  19. Posypkin, M.A., Parallel Heuristic Global Optimization Algorithm, Tr. Inst. Sist. Analiza Ross. Akad. Nauk, 2008, vol. 32, pp. 166–179.

    Google Scholar 

  20. Sergeyev, Ya.D. and Kvasov, D.E., Diagonal’nye metody global’noi optimizatsii (Diagonal Methods of Global Optimization), Moscow: Fizmatlit, 2008.

    Google Scholar 

  21. Strongin, R.G., Chislennye metody v mnogoekstremal’nykh zadachakh. Informatsionno-statisticheskii podkhod (Numerical Methods in Multiextremum Problems. An Information-Statistical Approach), Moscow: Nauka, 1978.

    Google Scholar 

  22. Chernov, A.V., On Existence of the Nash Equilibrium in a Differential Game Associated with Elliptic Equations: The Monotone Case, Mat. Teor. Igr Prilozh., 2015, vol. 7, no. 3, pp. 48–78.

    MathSciNet  MATH  Google Scholar 

  23. Chirkina, D.N., Review of the Relaxation Method to Find Nash Equilibria in Noncooperative Continuous Multiperson Games, Proc. XVI Int. Young Scientists Conf. “Technology and Systems-2014,” Moscow, 2014, pp. 37–40.

    Google Scholar 

  24. Shvedov, I.A., Kompaktnyi kurs matematicheskogo analiza. Chast’ 2. Differentsial’noe ischislenie funktsii mnogikh peremennykh (Compact Course in Mathematical Analysis. Part 2: Differential Calculus of Multivariable Functions), Novosibirk: Novosibirsk. Gos. Univ., 2003.

    Google Scholar 

  25. Shor, N.Z., Metody minimizatsii nedifferentsiruemykh funkstsii i ikh prilozheniya (Minimization Methods for Nondifferentiable Functions and Their Applications), Kiev: Naukova Dumka, 1979.

    MATH  Google Scholar 

  26. Basar, T., Relaxation Techniques and Asynchronous Algorithms for Online Computation of Non-Cooperative Equilibria, J. Econom. Dynam. Control, 1987, vol. 11, no. 4, pp. 531–549.

    Article  MathSciNet  MATH  Google Scholar 

  27. Dreves, A., Facchinei, F., Kanzow, C., and Sagratella, S., On the Solution of the KKT Conditions of Generalized Nash Equilibrium Problems, SIAM J. Optimiz., 2011, vol. 21, no. 3, pp. 1082–1108.

    Article  MathSciNet  MATH  Google Scholar 

  28. Facchinei, F. and Kanzow, C., Generalized Nash Equilibrium Problems, Ann. Oper. Res., 2010, vol. 175, pp. 177–211.

    Article  MathSciNet  MATH  Google Scholar 

  29. Facchinei, F. and Lampariello, L., Partial Penalization for the Solution of Generalized Nash Equilibrium Problems, J. Global Optim., 2011, vol. 50, no. 1, pp. 39–57.

    Article  MathSciNet  MATH  Google Scholar 

  30. Facchinei, F. and Pang, J.S., Finite-Dimensional Variational Inequalities and Complementarity Problems, New York: Springer, 2003.

    MATH  Google Scholar 

  31. Facchinei, F. and Pang, J.-S., Exact Penalty Functions for Generalized Nash Problems, in Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, Di Pillo, G. and Roma, M., Eds., vol. 83, 2006, pp. 115–126.

    Article  MATH  Google Scholar 

  32. Fukushima, M., Restricted Generalized Nash Equilibria and Controlled Penalty Algorithm, Technical Report, 2011, vol. 8, no. 3, pp. 201–218.

    MathSciNet  MATH  Google Scholar 

  33. von Heusinger, A. and Kanzow, C., Methods for Generalized Nash Equilibrium Problems with Inexact Line Search, J. Optim. Theory Appl., 2009, no. 143, pp. 159–183.

  34. Izmailov, A.F. and Solodov, M.V., On Error Bounds and Newton-type Methods for Generalized Nash Equilibrium Problems, Comput. Optim. Appl., 2014, vol. 59, no. 1–2, pp. 201–218.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kanzow, C. and Steck, D., Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems, SIAM J. Optimiz., 2016, vol. 26, no. 4, pp. 2034–2058.

    Article  MathSciNet  MATH  Google Scholar 

  36. Krawczyk, J.B. and Uryasev, S., Relaxation Algorithms to Find Nash Equilibria with Economic Applications, Environ. Model. Assessment, 2000, no. 5, pp. 63–73.

  37. Nikaido, H. and Isoda, K., Note on Noncooperative Convex Games, Pacific J. Math., 1955, vol. 5, no. 5, pp. 807–815.

    Article  MathSciNet  MATH  Google Scholar 

  38. Pang, J.S. and Fukushima, M., Quasi-variational Inequalities, Generalized Nash Equilibria, and Multi-Leader-Follower Games, Comput. Manage. Sci., 2005, vol. 2, no. 1, pp. 21–56.

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosen, J.B., Existence and Uniqueness of Equilibrium Points for Concave n-Person Games, Econometrica, 1965, vol. 33, no. 3, pp. 520–534.

    Google Scholar 

  40. Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, New York: Springer, 2002.

    Book  MATH  Google Scholar 

  41. Uryas’ev, S. and Rubinstein, R.Y., On Relaxation Algorithms in Computation of Noncooperative Equilibria, IEEE Trans. Automat. Control, 1994, vol. 39, no. 6, pp. 1263–1267.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, L.P. and Han, J.Y., Unconstrained Optimization Reformulations of Equilibrium Problems, Acta Math. Sinica, Engl. Series, 2009, vol. 25, no. 3, pp. 343–354.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernov.

Additional information

Russian Text © The Author(s), 2017, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2017, No. 2, pp. 62–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, A.V. On Some Approaches to Find Nash Equilibrium in Concave Games. Autom Remote Control 80, 964–988 (2019). https://doi.org/10.1134/S0005117919050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919050138

Keywords

Navigation