Skip to main content
Log in

Comparative Analysis of Robust and Classical Methods for Estimating the Parameters of a Threshold Autoregression Equation

  • Robust, Adaptive, and Network Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Using computer simulation and a study of the asymptotic distribution, we consider the relative efficiency of M-estimates for the coefficients of the threshold autoregressive equation with respect to the least squares and least absolute deviation estimates. We assume that the updating sequence of the autoregressive equation can have Student’s, logistic, double exponential, normal, or contaminated normal distributions. We prove asymptotic normality of M-estimates with a convex loss function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Gooijer, J.G., Elements of Nonlinear Time Series Analysis and Forecasting, Cham: Springer, 2017.

    Book  MATH  Google Scholar 

  2. Tong, H., Threshold Models in Non–linear Time Series Analysis, New York: Springer, 1983.

    Book  MATH  Google Scholar 

  3. Ozaki, T., Time Series Modeling of Neuroscience Data, New York: CRC Press, 2012.

    Book  MATH  Google Scholar 

  4. Chavas, J.–P., Modeling Population Dynamics: a Quantile Approach, Math. Biosci., 2015, vol. 262, pp. 138–146.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, K., Wang, D., and Li, H., Threshold Autoregression Analysis for Finite–Range Time Series of Counts with an Application onMeasles Data, J. Stat. Comput. Simulat., 2018, vol. 88, no. 3, pp. 597–614.

    Article  Google Scholar 

  6. Hamaker, E.L., Zhang, Z, and van der Maas, H.L.J., Using Threshold Autoregressive Models to Study Dyadic Interactions, Psychometrika, 2009, vol. 74, no. 4, pp. 727–745.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hansen, B.E., Threshold Autoregression in Economics, Statist. Interface, 2011, vol. 73, no. 8, pp. 563–573.

    Google Scholar 

  8. Bertone, E., O’Halloran, K., Stewart, R.A., de Oliveira, G.F., Medium–term Storage Volume Prediction for Optimum Reservoir Management: A Hybrid Data–Driven Approach, J. Clean. Prod., 2017, vol. 154, no. 15, pp. 353–365.

    Article  Google Scholar 

  9. Pu Shuzhen and Yu Huiling, Threshold Autoregression Models for Forecasting El Nino Events, Acta Oceanologica Sinica, 1990, vol. 9, no. 1, pp. 61–67.

    Google Scholar 

  10. Kabiri, S., Lotfollahzadeh, T., Shayesteh, M.G., and Kalbkhani, H., Modelling and Forecasting of Signalto–Interference Plus Noise Ratio in Femtocellular Networks Using Logistic Smooth Threshold Autoregressive Model, IET Signal Process., 2015, vol. 9, no. 1, pp. 48–59.

    Article  Google Scholar 

  11. Howell Tong’s Contributions to Statistics, Kung–Sik Chan, Ed., London: World Scientific, 2009.

  12. Maronna, R.A., Martin, D., and Yohai, V., Robust Statistics: Theory and Methods, Chichester: Wiley, 2006.

    Book  MATH  Google Scholar 

  13. Polyak, B.T. and Khlebnikov, M.V., The Method of Principal Components: Robust Versions, Autom. Remote Control, 2017, vol. 78, no. 3, pp. 490–596.

    Article  MathSciNet  MATH  Google Scholar 

  14. Poljak, B.T. and Tsypkin, Ja.Z., Robust Identification, Automatica, 1980, vol. 16, no. 1, pp. 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. Polyak, B.T. and Tsypkin, Ya.Z., Robust Pseudogradient Adaptation Algorithms, Autom. Remote Control, 1980, vol. 41, no. 10, part 1, pp. 1404–1409.

    Google Scholar 

  16. Huber, P. and Ronchetti, E.M., Robust Statistics, Hoboken: Wiley, 2009.

    Book  MATH  Google Scholar 

  17. Douc, R., Moulines, E., and Stoffer, D., Nonlinear Time Series: Theory, Methods and Applications with R Examples, Boca Raton: CRC Press, 2014.

    Book  MATH  Google Scholar 

  18. Petruccelli, J.D. and Woolford, S.W., A Threshold AR(1) Model, J. Appl. Probab., 1984, vol. 21, no. 2, pp. 270–286.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, D. and Ling, S., On the Least Squares Estimation of Multiple–Regime Threshold Autoregressive Models, J. Econometrics, 2012, vol. 167, no. 1, pp. 240–253.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hampel, F.R., Roncetti, E.M., Rausseew, P.J., and Stahel, W.A., Robust Statistics. The Approach Based on Influence Functions, New York: Wiley, 1986. Translated under the title Robastnost’ v statistike: podkhod na osnove funktsii vliyaniya, Moscow: Mir, 1989.

    Google Scholar 

  21. Lehmann, E.L. and Casella, G., Theory of Point Estimation, New York: Springer, 1998. Translated under the title Teoriya tochechnogo otsenivaniya, Moscow: Nauka, 1991.

    MATH  Google Scholar 

  22. Hettmansperger, T.P. and McKean, J.W., Robust Nonparametric Statistical Methods, Boca Raton: CRC Press, 2011.

    MATH  Google Scholar 

  23. Wang, L. and Wang, J., The Limiting Behavior of Least Absolute Deviation Estimators for Threshold Autoregressive Models, J. Multivariate Anal., 2004, vol. 89, no. 2, pp. 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  24. Korolev, V.Yu., Veroyatnostno–statisticheskii analiz khaoticheskikh protsessov s pomoshch’yu smeshannykh gaussovskikh modelei (Probabilistic and Statistical Analysis of Chaotic Processes with Gaussian Mixture Models), Moscow: Mosk. Gos. Univ., 2008.

    Google Scholar 

  25. Mudrov, V.I. and Kushko, V.L., Metod naimen’shikh modulei (Method of Least Absolute Values), Moscow: Znanie, 1971.

    Google Scholar 

  26. Qian, L., On Maximum Likelihood Estimators for a Threshold Autoregression, J. Statist. Plann. Inference, 1998, vol. 75, no. 1, pp. 21–46.

    Article  MathSciNet  MATH  Google Scholar 

  27. Shiryaev, A.N., Veroyatnost’ (Probability), Moscow: Nauka, 2011.

    MATH  Google Scholar 

  28. Stout, W.F., Almost Sure Convergence, New York: Academic, 1974.

    MATH  Google Scholar 

  29. Billingsley, P., Convergence of Probability Measures, New York: Wiley, 1968. Translated under the title Skhodimost’ veroyatnostnykh mer, Moscow: Nauka, 1977.

    MATH  Google Scholar 

  30. Liptser, R.Sh. and Shiryaev, A.N., Teoriya martingalov (Theory of Martingales), Moscow: Nauka, 1986.

    MATH  Google Scholar 

  31. Rao, C.R., Linear Statistical Inference and Its Applications, New York: Wiley, 1965. Translated under the title Lineinye statisticheskie metody i ikh primeneniya, Moscow: Nauka, 1968.

    MATH  Google Scholar 

  32. Andersen, P.K. and Gill, R.D., Cox’s Regression Model for Counting Processes: A Large Sample Study, Ann. Statist., 1982, vol. 10, no. 4, pp. 1100–1120.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Goryainov or E. R. Goryainova.

Additional information

Russian Text © V.B. Goryainov, E.R. Goryainova, 2019, published in Avtomatika i Telemekhanika, 2019, No. 4, pp. 93–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryainov, V.B., Goryainova, E.R. Comparative Analysis of Robust and Classical Methods for Estimating the Parameters of a Threshold Autoregression Equation. Autom Remote Control 80, 666–675 (2019). https://doi.org/10.1134/S0005117919040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919040052

Keywords

Navigation