Skip to main content
Log in

Optimizing flight trajectories for space vehicles with an additional fuel tank. I

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider optimization problems for spatial trajectories of space flights for space vehicles with an additional fuel tank from a low circular orbit of a man-made Earth satellite to a geotransitional orbit. The motion of the space vehicle is controlled through a jet engine with bounded thrust. To discard the additional tank, the vehicle needs to switch off its engine and spend a certain time. The mass of the discarded tank is assumed to be proportional to the mass of the expended fuel, and the mass of the engine and additional constructions is proportional to the thrust. We minimize the value of the impulse needed to transfer to the geostationary orbit for a given useful mass, or, which is the same, maximize the useful mass for a given value of this impulse. In the first part of the paper, we consider in detail the history of this problem and computational schemes that can be used to solve this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsentr obrabotki i otobrazheniya poletnoi informatsii GKNPTs im. M.V. Khrunicheva. Proshedshie puski (Khrunichev Center of Processing and Visualization of Flight Information. Past Launches). http://coopi.khrunichev.ru/main.php?id=11

  2. Grigor’ev, I.S. and Danilina, I.A., Optimization of Interorbital Three-dimensional Transfer Trajectories for Stage Spacecraft, Autom. Remote Control, 2007, vol. 68, no. 8, pp. 1372–1390.

    Article  MATH  Google Scholar 

  3. Zenger-Bredt, I., A Study of Optimal Conditions for Vertical Flight of a Rocket with Arbitrary Number of Stages in a Gravity Field, Vopr. Raketnoi Tekh., 1954, no. 5(23), pp. 3–26.

    Google Scholar 

  4. Okhotsimskii, D.E. and Eneev, T.M., Some Variational Problems Related to Launching a Man-Made Earth Satellite, Usp. Fiz. Nauk, 1957, vol. 63, no. 1a, pp. 5–32.

    Article  Google Scholar 

  5. Troitskii, V.A., Motion Optimization for a Multi-Stage Rocket, Prikl. Mat. Mekh., 1965, vol. 29, no. 4, pp. 745–750.

    Google Scholar 

  6. Troitskii, V.A., Variational Optimization Problems for Control Processes for Equations with Discontinuous Right-Hand Sides, Prikl. Mat. Mekh., 1962, vol. 26, no. 2, pp. 233–246.

    Google Scholar 

  7. Troitskii, V.A., On Optimal Modes of Flight for Multi-Stage Rockets, Kosm. Issled., 1967, vol. 5, no. 2, pp. 176–183.

    Google Scholar 

  8. Bolonkin, A.A., Optimizing Trajectories in Multi-Stage Rockets, in Studies in Flight Dynamics, no. 1, Moscow: Mashinostroenie, 1965.

  9. Kosmodem’yanskii, V.A., On One Kind of Variational Problems, Prikl. Mat. Mekh., 1963, vol. 27, no. 6, pp. 1111–1116.

    Google Scholar 

  10. Kosmodem’yanskii, V.A., On the Theory of Multistage Rockets, Dokl. Akad. Nauk USSR, 1964, vol. 156, no. 2, pp. 286–289.

    Google Scholar 

  11. Kosmodem’yanskii, V.A., On the Computations of Composite Rockets, Inzhenernyi Zh., 1964, vol. 4, no. 2, pp. 219–224.

    Google Scholar 

  12. Kosmodem’yanskii, V.A., Necessary Variational Calculus Conditions for One Problem of Boltz–Meyer Type, Prikl. Mat. Mekh., 1965, vol. 29, no. 2, pp. 368–372.

    Google Scholar 

  13. Kosmodem’yanskii, V.A., Sufficient Absolute Extremum Conditions in One Variational Problem of Boltz–Meyer Type, Prikl. Mat. Mekh., 1966, vol. 30, no. 3, pp. 599–604.

    Google Scholar 

  14. Kosmodem’yanskii, V.A., Optimal Composition of Stages in a Composite Rocket, Mekh. Tverd. Tela, 1972, no. 1, pp. 25–29.

    Google Scholar 

  15. Kosmodem’yanskii, V.A., On Optimization of Parameters of Composite Rockets, Mekh. Tverd. Tela, 1980, no. 5, pp. 36–41.

    Google Scholar 

  16. Kosmodem’yanskii, V.A., On the Method of Computing the Optimal Program of Stage-Wise Thrust, Mekh. Tverd. Tela, 1987, no. 4, pp. 17–22.

    Google Scholar 

  17. Velichenko, V.V., Optimal Control for Composite Systems, Dokl. Akad. Nauk USSR, 1967, vol. 176, no. 4, pp. 754–756.

    MathSciNet  MATH  Google Scholar 

  18. Velichenko, V.V., Optimal Control Problems for Equations with Discontinuous Right-Hand Sides, Autom. Remote Control, 1966, vol. 27, no. 7, pp. 1153–1164.

    MathSciNet  MATH  Google Scholar 

  19. Velichenko, V.V., Optimality Conditions in Control Problems with Intermediate Conditions, Dokl. Akad. Nauk USSR, 1967, vol. 174, no. 5, pp. 1011–1013.

    MathSciNet  MATH  Google Scholar 

  20. Moiseenko, V.P., Optimization of a Multistage Spacecraft, Tr. TsAGI, 1971, no. 1295.

  21. Moiseenko, V.P., On One Approach to Solving Discontinuous Variational Problems, in Issled. Oper., Moscow: VTs AN SSSR, 1974, no. 4, pp. 146–162.

    Google Scholar 

  22. Medvedev, V.A. and Rozova, V.N., Optimal Control of Stepped Systems, Autom. Remote Control, 1972, vol.33, no. 3, part 1, pp. 359–366.

    MATH  Google Scholar 

  23. Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  24. Fedorenko, R.P., Vvedenie v vychislitel’nuyu fiziku (Introduction to Computational Physics), Moscow: MFTI, 1994.

    Google Scholar 

  25. Ashchepkov, L.T., Optimal Control for Systems with Intermediate Conditions, Prikl. Mat. Mekh., 1981, vol. 45, no. 2, pp. 215–222.

    MathSciNet  MATH  Google Scholar 

  26. Ashchepkov, L.T., Optimal’noe upravlenie razryvnymi sistemami (Optimal Control for Discontinuous Systems), Novosibirsk: Nauka, Siberia Branch, 1987.

    MATH  Google Scholar 

  27. Ashchepkov, L.T., Belov, B.I., Bulatov, V.P., et al., Metody resheniya zadach matematicheskogo programmirovaniya i optimal’nogo upravleniya (Methods for Solving Mathematical Programming and Optimal Control Problems), Novosibirsk: Nauka, Siberia Branch, 1984.

    Google Scholar 

  28. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  29. Grigor’ev, I.S. and Grigor’ev, K.G., On the Maximum Principle Conditions in Optimal Control Problems for a Collection of Dynamical Systems and Their Applications to Solving Optimal Control Problems for the Motion of Spacecraft, Kosm. Issled., 2003, vol. 41, no. 3, pp. 307–331.

    Google Scholar 

  30. Grigor’ev, K.G., Zapletin, M.P., and Silaev, D.A., Optimal Motion of a Spacecraft from the Moon Surface to Its Satellite’s Circular Orbit, Kosm. Issled., 1991, vol. 29, no. 5, pp. 695–704.

    Google Scholar 

  31. Grigor’ev, K.G., Zapletina, E.V., and Zapletin, M.P., Optimal Soft Landing of a Spacecraft on the Moon Surface from a Circular Orbit of Its Satellite, Kosm. Issled., 1992, vol. 30, no. 2, pp. 203–211.

    Google Scholar 

  32. Grigor’ev, K.G., Zapletina, E.V., and Zapletin, M.P., Optimal Motion of a Spacecraft from the Moon Surface to a Given Point of Its Man-Made Satellite’s Circular Orbit, Kosm. Issled., 1992, vol. 30, no. 3, pp. 321–332.

    Google Scholar 

  33. Grigor’ev, K.G., Zapletina, E.V., and Zapletin, M.P., Optimal Soft Landing of a Spacecraft from a Circular Orbit of a Man-Made Moon Satellite to a Given Point on Its Surface, Kosm. Issled., 1992, vol. 30, no. 4, pp. 483–494.

    Google Scholar 

  34. Grigor’ev, K.G. and Zapletin, M.P., A Numerical Solution for Boundary Problems of the Maximum Principle in Optimization Problems of Space Flight Dynamics, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1993, no. 1, pp. 91–96.

    MATH  Google Scholar 

  35. Grigor’ev, K.G., Zapletina, E.V., and Zapletin, M.P., Optimal Spatial Flights of a Spacecraft between Moon Surface and the Orbit of Its Man-Made Satellite, Kosm. Issled., 1993, vol. 31, no. 5, pp. 34–52.

    Google Scholar 

  36. Grigor’ev, K.G., On Spacecraft Maneuvers with Minimal Mass Expenditure and Bounded Time, Kosm. Issled., 1994, vol. 32, no. 2, pp. 45–60.

    Google Scholar 

  37. Grigor’ev, I.S. and Grigor’ev, K.G., Optimal Trajectories of Flights of a Spacecraft with Jet Engines of Large Bounded Thrust between the Orbit of a Man-Made Earth Satellite and the Moon, Kosm. Issled., 1994, vol. 3, no. 6, pp. 108–129.

    Google Scholar 

  38. Grigor’ev, K.G. and Fedyna, A.V., Optimal Flights of Spacecraft with Jet Engines of Large Bounded Thrust between Complanar Circular Orbits, Kosm. Issled., 1995, vol. 33, no. 4, pp. 403–416.

    Google Scholar 

  39. Grigor’ev, I.S. and Grigor’ev, K.G., Optimal Trajectories for the Return of a Spacecraft with Jet Engines of Large Bounded Thrust from the Moon to the Earth, Kosm. Issled., 1995, vol. 33, no. 5, pp. 513–532.

    Google Scholar 

  40. Grigor’ev, K.G. and Grigor’ev, I.S., A Study of Optimal Spatial Trajectories for Flights of Spacecraft with Jet Engines of Large Bounded Thrust between the Orbits of Man-Made Earth and Moon Satellites, Kosm. Issled., 1997, vol. 35, no. 1, pp. 52–75.

    Google Scholar 

  41. Grigor’ev, K.G. and Zapletin, M.P., On Vertical Launch in Optimization Problems of Rocket Dynamics, Kosm. Issled., 1997, vol. 35, no. 4, pp. 363–377.

    Google Scholar 

  42. Conway, B.A., A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems, J. Optim. Theory Appl., 2012, vol. 152, no. 2, pp. 271–306. http://dx.doi.org/10.1007/s10957-011-9918-z

    Article  MathSciNet  MATH  Google Scholar 

  43. Pontani, M., Simple Method for Performance Evaluation of Multistage Rockets, Acta Astronautica, 2014, vol. 94, no. 2, pp. 852–864. http://dx.doi.org/10.1016/j.actaastro.2013.09.013

    Article  Google Scholar 

  44. Pontani, M. and Cecchetti, G., Ascent Trajectories of Multistage Launch Vehicles: Numerical Optimization with Second-Order Conditions Verification, ISRN Oper. Res., 2013, vol. 2013, Article ID 498765. http://dx.doi.org/10.1155/2013/498765

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grigoriev.

Additional information

Original Russian Text © I.S. Grigoriev, I.A. Danilina, 2017, published in Avtomatika i Telemekhanika, 2017, No. 12, pp. 131–140.

This paper was recommended for publication by A.P. Kurdyukov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, I.S., Danilina, I.A. Optimizing flight trajectories for space vehicles with an additional fuel tank. I. Autom Remote Control 78, 2203–2210 (2017). https://doi.org/10.1134/S0005117917120086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917120086

Keywords

Navigation