Skip to main content
Log in

Mean field games based on stable-like processes

  • Mathematical Game Theory and Applications
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We investigate the mean field games of N agents based on the nonlinear stable-like processes. The main result of the paper is that any solution of the limiting mean field consistency equation generates a 1/N-Nash equilibrium for the approximating game of N agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogorodnikov, A.A., Solution of Nonlinear Stochastic Equations with a Generator of a Semigroup Discontinuous at Zero, Izv. Vyssh. Uchebn. Zaved., Mat., 2011, no. 6, pp. 90–99.

    MathSciNet  MATH  Google Scholar 

  2. Uchaikin, V.V., Metod drobnykh proizvodnykh (Fractional Derivatives Method), Ulyanovsk: Artishok, 2008.

    Google Scholar 

  3. Achdou, Y. and Capuzzo-Dolcetta, I., Mean Field Games: Numerical Methods, SIAM J. Numer. Anal., 2010, vol. 48, pp. 1136–1162.

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson, D. and Djehiche, B., A Maximum Principle for SDEs of Mean-Field Type, Appl. Math. Optim., 2011, vol. 63, pp. 341–356.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bailleul, I.F., Sensitivity for the Smoluchowski Equation, J. Phys. A: Math. Theor., 2011, vol. 44, p. 245004.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bass, R.F. and Chen, Z.-Q., System of Equations Driven by Stable Processes, J. Prob. Theory Relat. Fields., 2006, vol. 134, pp. 175–214.

    Article  MathSciNet  MATH  Google Scholar 

  7. Benaim, M. and Le Boudec, J.-Y., A Class of Mean Field Interaction Models for Computer and Communication Systems, Technical Report LCA-REPORT-2008-010, and 6th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008, DOI: 10.1109/WIOPT.2008.4586140.

    Google Scholar 

  8. Benaim, M. and Weibull, J., Deterministic Approximation of Stochastic Evolution in Games, Econometrica, 2003, vol. 71, no. 3, pp. 873–903.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bordenave, C., McDonald, D., and Proutiere, A., A Particle System in Interaction with a Rapidly Varying Environment: Mean Field Limits and Applications, arXiv:math/0701363v2, 2007.

  10. Buckdahn, R., Djehiche, B., Li, J., and Peng, S., Mean-field Backward Stochastic Differential Equations: A Limit Approach, Ann. Prob., 2009, vol. 37, no. 4, pp. 1524–1565.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cepeda, E. and Fournier, N., Smoluchowski’s Equation: Rate of Convergence of the Marcus–Lushnikov Process, Stoch. Process. Appl., 2011, vol. 121, no. 6, pp. 1411–1444.

    Article  MathSciNet  MATH  Google Scholar 

  12. Crisan, D., Particle Approximations for a Class of Stochastic Partial Differential Equations, Appl. Math. Optim., 2006, vol. 54, no. 3, pp. 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  13. DelMoral, P., Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Probability and Its Applications, New York: Springer-Verlag, 2004.

    Book  Google Scholar 

  14. Ferrari, P.A., Limit Theorems for Tagged Particles. Disordered Systems and Statistical Physics: Rigorous Results (Budapest, 1995), Markov Process. Related Fields, 1996, vol. 2, no. 1, pp. 17–40.

    Google Scholar 

  15. Gast, N. and Gaujal, B., A Mean Field Approach for Optimization in Particle Systems and Applications, Proc. Fourth Int. ICST Conf. on Performance Evaluation Methodologies and Tools, DOI: 10.4108/ICST.VALUETOOLS2009.7477.

  16. Gomes, D.A., Mohr, J., and Souza, R.R., Discrete Time, Finite State Space Mean Field Games, J. Math. Pures Appl., 2010, vol. 9, no. 93, pp. 308–328.

    MathSciNet  MATH  Google Scholar 

  17. Grigorescu, I., Uniqueness of the Tagged Particle Process in a System with Local Interactions, Ann. Prob., 1999, vol. 27, no. 3, pp. 1268–1282.

    Article  MathSciNet  MATH  Google Scholar 

  18. Guéant, O., Lasry, J.-M., and Lions, P.-L., Mean Field Games and Applications, Paris–Princeton Lectures on Mathematical Finance, Princeton: Springer, 2010.

    Google Scholar 

  19. Huang, M., Caines, P.E., and Malhamé, R.P., Individual and Mass Behaviour in Large Population Stochastic Wireless Power Control Problems: Centralized and Nash Equilibrium Solutions, Proc. 42nd IEEE Conf. on Decision and Control, Maui, Hawaii, December 2003, pp. 98–103.

    Google Scholar 

  20. Huang, M., Malhamé, R.P., and Caines, P.E., Nash Equilibria for Large-Population Linear Stochastic Systems with Weakly Coupled Agents, in Analysis, Control and Optimization of Complex Dynamic Systems, Boukas, E.K. and Malhamé, R.P., Eds., New York: Springer, 2005, pp. 215–252.

    Chapter  Google Scholar 

  21. Huang, M., Malhamé, R.P., and Caines, P.E., Large Population Stochastic Dynamic Games: Closed-Loop Mckean–Vlasov Systems and the Nash Certainty Equivalence Principle, Comm. Inf. Syst., 2006, vol. 6, pp. 221–252.

    MathSciNet  MATH  Google Scholar 

  22. Huang, M., Caines, P.E., and Malhamé, R.P., Large-Population Cost-Coupled LQG Problems with Nonuniform Agents: Individual-Mass Behavior and Decentralized e-Nash Equilibria, IEEE Trans. Automat. Contol, 2007, vol. 52, no. 9, pp. 1560–1571.

    Article  MathSciNet  Google Scholar 

  23. Huang, M., Caines, P.E., and Malhamé, R.P., The NCE (Mean Field) Principle with Locality Dependent Cost Interactions, IEEE Trans. Automat. Control, 2010, vol. 55, no. 12, pp. 2799–2805.

    Article  MathSciNet  Google Scholar 

  24. Huang, M., Large-population LQG Games Involving a Major Player: The Nash Certainty Equivalence Principle, SIAM J. Control Optim., 2010, vol. 48, pp. 3318–3353.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jourdain, B. and Roux, R., Convergence of a Stochastic Particle Approximation for Fractional Scalar Conservation Laws (English Summary), Stoch. Process. Appl., 2011, vol. 121, no. 5, pp. 957–988.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolokoltsov, V.N., On the Regularity of Solutions to the Spatially Homogeneous Boltzmann Equation with Polynomially Growing Collision Kernel, Adv. Stud. Contemp. Math., 2006, vol. 12, pp. 9–38.

    MathSciNet  MATH  Google Scholar 

  27. Kolokoltsov, V.N., Nonlinear Markov Semigroups and Interacting Lévy Type Processes, J. Stat. Physics, 2007, vol. 126, no. 3, pp. 585–642.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolokoltsov, V.N., Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracks in Mathematics 182, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  29. Kolokoltsov, V.N., Nonlinear Lévy and Nonlinear Feller Processes: An Analytic Introduction, in De Gruyter Series “Mathematics and Life Sciences,” Antoniouk, A.V. and Melnik, R.V.N., Eds., Berlin: Walter de Gruyter, 2013, pp. 43–69.

    Google Scholar 

  30. Kolokoltsov, V.N., Nonlinear Markov Games on a Finite State Space (Mean-Field and Binary Interactions), Int. J. Statist. Probab., Canadian Center of Science and Education (Open Access Journal), 2012, vol. 1, no. 1, pp. 77–91.

    Google Scholar 

  31. Kolokoltsov, V.N. and Yang, W., Sensitivity Analysis for HJB Equations with Application to Coupled Backward-Forward Systems, Preprint, 2012.

    Google Scholar 

  32. Kolokoltsov, V.N. and Yang, W., On Existence Results of General Kinetic Equations with a Path- Dependent Feature, Open J. Optimiz., 2013, vol. 2, no. 2, pp. 39–44.

    Article  Google Scholar 

  33. Kolokoltsov, V.N., Li, J., and Yang, W., Mean Field Games and Nonlinear Markov Processes, arXiv:1112.3744, 2012.

    Google Scholar 

  34. Kolokoltsov, V.N., Symmetric Stable Laws and Stable-Like Jump-Diffusions, Proc. London Math. Soc., 2000, vol. 80, no. 3, pp. 725–768.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolokoltsov, V.N., Troeva, M., and Yang, W., On the Rate of Convergence for the Mean-field Approximation of Controlled Diffusions with Large Number of Players, Dynamic Games Appl., 2013, DOI 10.1007/s13235-013-0095-6.

    Google Scholar 

  36. Kunita, H., Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge: Cambridge Univ. Press, 1990.

    MATH  Google Scholar 

  37. Lachapelle, A., Salomon, J., and Turinici, G., Computation of Mean Field Equilibria in Economics, Math. Models Methods Appl. Sci., 2010, vol. 20, pp. 567–588.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lasry, J.-M. and Lions, P.-L., Jeux á champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 2006, vol. 343, no. 9, pp. 619–625.

    Article  MathSciNet  Google Scholar 

  39. Le Boudec, J.-Y., McDonald, D., and Mundinger, J., A Generic Mean Field Convergence Result for Systems of Interacting Objects, QEST 2007 (4th Int. Conf. on Quantitative Evaluation of SysTems), 2007, pp. 3–18.

    Google Scholar 

  40. Man, P.L.W., Norris, J.R., Bailleul, I., and Kraft, M., Coupling Algorithms for Calculating Sensitivities of Smoluchowski’s Coagulation Equation, SIAM J. Sci. Comput., 2010, vol. 32, no. 2, pp. 635–655.

    Article  MathSciNet  MATH  Google Scholar 

  41. Olla, S., Central Limit Theorems for Tagged Particles and for Diffusions in Random Environment, in Milieux Alleatoires, Panor. Syntheses 12, Paris: Soc. Math. France, 2001, pp. 75–100.

    Google Scholar 

  42. Osada, H., Tagged Particle Processes and Their Non-Explosion Criteria, J. Math. Soc. Japan, 2010, vol. 62, no. 3, pp. 867–894.

    Article  MathSciNet  MATH  Google Scholar 

  43. Piasecki, J. and Sadlej, K., Deterministic Limit of Tagged Particle Motion: Effect of Reflecting Boundaries, Phys. A, 2003, vol. 323, pp. 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  44. Showalter, R.E., Existence and Representation Theorems for a Semilinear Sobolev Equation in Banach Space, SIAM J. Math. Anal., 1972, vol. 3, no. 3, pp. 527–543.

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarasov, V.E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, Heidelberg: Springer, 2010.

    MATH  Google Scholar 

  46. Uchaikin, V.V. and Zolotarev, V.M., Chance and Stability: Stable Distributions and Their Applications, Utrecht: VSP, 1999.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolokoltsov.

Additional information

Original Russian Text © V.N. Kolokoltsov, M.S. Troeva, W.Yang, 2013, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2013, No. 4, pp. 33–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolokoltsov, V.N., Troeva, M.S. & Yang, W. Mean field games based on stable-like processes. Autom Remote Control 77, 2044–2064 (2016). https://doi.org/10.1134/S0005117916110138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916110138

Navigation