Skip to main content
Log in

Design of interval observers for uncertain dynamical systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Interval state observers provide an estimate on the set of admissible values of the state vector at each instant of time. Ideally, the size of the evaluated set is proportional to the model uncertainty, thus interval observers generate the state estimates with estimation error bounds, similarly to Kalman filters, but in the deterministic framework. Main tools and techniques for design of interval observers are reviewed in this tutorial for continuous-time, discrete-time and time-delayed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, in Lecture Notes in Control and Information Sciences, vol. 322, Meurer, T., Graichen, K., and Gilles, E.-D., Eds., New York: Springer, 2005.

  2. Fossen, T. and Nijmeijer, H., New Directions in Nonlinear Observer Design, New York: Springer, 1999.

    MATH  Google Scholar 

  3. Nonlinear Observers and Applications, in Lecture Notes in Control and Information Sciences, vol. 363, Besançon, G., Ed., New York: Springer, 2007.

  4. Esfandiari, F. and Khalil, H., Output Feedback Stabilization of Fully Linearizable Systems, Int. J. Control, 1992, vol. 56, pp. 1007–1037.

    Article  MathSciNet  MATH  Google Scholar 

  5. Levant, A., Higher-Order Sliding Modes: Differentiation and Output Feedback Control, Int. J. Control, 2003, vol. 76, nos. 9–10, pp. 924–941.

    Article  MathSciNet  MATH  Google Scholar 

  6. Golubev, A., Krishchenko, A., and Tkachev, S., Stabilization of Nonlinear Dynamic Systems Using the System State Estimates Made by the Asymptotic Observer, Autom. Remote Control, 2005, vol. 66, no. 7, pp. 1021–1058.

    Article  MathSciNet  MATH  Google Scholar 

  7. Shamma, J., Control of Linear Parameter Varying Systems with Applications, Overview of LPV Systems, New York: Springer, 2012, pp. 1–22.

    Google Scholar 

  8. Marcos, A. and Balas, J., Development of Linear-Parameter-Varying Models for Aircraft, J. Guidance, Control, Dynamics, 2004, vol. 27, no. 2, pp. 218–228.

    Article  Google Scholar 

  9. Shamma, J. and Cloutier, J., Gain-Scheduled Missile Autopilot Design Using Linear Parameter-Varying Transformations, J. Guidance, Control, Dynamics, 1993, vol. 16, no. 2, pp. 256–261.

    Article  Google Scholar 

  10. Tan, W., Applications of Linear Parameter-Varying Control Theory, PhD Dissertation, Dept. of Mechanical Engineering, University of California at Berkeley, 1997.

    Google Scholar 

  11. Shtessel, Y., Edwards, C., Fridman, L., et al., Sliding Mode Control and Observation. Control Engineering, Basel: Birkhäuser, 2013.

    Google Scholar 

  12. Guanrong, C., Jianrong, W., and Leang, S., Interval Kalman Filtering, IEEE Trans. Aerospace Electron. Syst., 1997, vol. 33, no. 1, pp. 250–259.

    Article  Google Scholar 

  13. Jaulin, L., Nonlinear Bounded-Error State Estimation of Continuous-Time Systems, Automatica, 2002, vol. 38, no. 2, pp. 1079–1082.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kieffer, M. and Walter, E., Guaranteed Nonlinear State Estimator for Cooperative Systems, Numer. Algorithms, 2004, vol. 37, pp. 187–198.

    Article  MathSciNet  MATH  Google Scholar 

  15. Olivier, B. and Gouzé, J., Closed Loop Observers Bundle for Uncertain Biotechnological Models, J. Process Control, 2004, vol. 14, no. 7, pp. 765–774.

    Article  Google Scholar 

  16. Milanese, M. and Novara, C., Unified Set Membership Theory for Identification, Prediction and Filtering of Nonlinear Systems, Automatica, 2011, vol. 47, no. 10, pp. 2141–2151.

    MathSciNet  MATH  Google Scholar 

  17. Moisan, M., Bernard, O., and Gouzé, J., Near Optimal Interval Observers Bundle for Uncertain Bioreactors, Automatica, 2009, vol. 45, no. 1, pp. 291–295.

    Article  MathSciNet  MATH  Google Scholar 

  18. Raïssi, T., Videau, G., and Zolghadri, A., Interval Observers Design for Consistency Checks of Nonlinear Continuous-Time Systems, Automatica, 2010, vol. 46, no. 3, pp. 518–527.

    Article  MathSciNet  MATH  Google Scholar 

  19. Raïssi, T., Efimov, D., and Zolghadri, A., Interval State Estimation for a Class of Nonlinear Systems, IEEE Trans. Automat. Control, 2012, vol. 57, no. 1, pp. 260–265.

    Article  MathSciNet  Google Scholar 

  20. Efimov, D., Fridman, L., Raïssi, T., et al., Interval Estimation for LPV Systems Applying High Order Sliding Mode Techniques, Automatica, 2012, vol. 48, pp. 2365–2371.

    Article  MATH  Google Scholar 

  21. Gouzé, J., Rapaport, A., and Hadj-Sadok, M., Interval Observers for Uncertain Biological Systems, Ecolog. Modell., 2000, vol. 133, pp. 46–56.

    Article  Google Scholar 

  22. Mazenc, F. and Bernard, O., Interval Observers for Linear Time-Invariant Systems with Disturbances, Automatica, 2011, vol. 47, no. 1, pp. 140–147.

    Article  MathSciNet  MATH  Google Scholar 

  23. Combastel, C., Stable Interval Observers in C for Linear Systems with Time-Varying Input Bounds, IEEE Trans. Automat. Control, 2013, vol. 58, no. 2, pp. 481–487.

    Article  MathSciNet  Google Scholar 

  24. Farina, L. and Rinaldi, S., Positive Linear Systems. Theory and Applications, New York: Wiley, 2000.

    Book  MATH  Google Scholar 

  25. Smith, H., Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, in Surveys and Monographs, vol. 41, Providence: AMS, 1995.

  26. Briat, C., Robust Stability Analysis of Uncertain Linear Positive Systems via Integral Linear Constraints: l 1- and l -gain Characterizations, Proc. 50th IEEE CDC and ECC, Orlando, 2011, pp. 6337–6342.

    Google Scholar 

  27. Ebihara, Y., Peaucelle, D., and Arzelier, D., L1 Gain Analysis of Linear Positive Systems and Its Application, Proc. 50th IEEE CDC and ECC, Orlando, 2011, pp. 4029–4035.

    Google Scholar 

  28. Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2002, 3rd ed.

    MATH  Google Scholar 

  29. Hirsch, M.W. and Smith, H.L., Monotone Maps. A Review, J. Differ. Equat. Appl., 2005, vol. 11, nos. 4–5, pp. 379–398.

    Article  MathSciNet  MATH  Google Scholar 

  30. Haddad, W. and Chellaboina, V., Stability Theory for Nonnegative and Compartmental Dynamical Systems with Time Delay, Syst. Control Lett., 2004, vol. 51, pp. 355–361.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dambrine, M. and Richard, J.-P., Stability Analysis of Time-Delay Systems, Dynamic Syst. Appl., 1993, vol. 2, pp. 405–414.

    MathSciNet  MATH  Google Scholar 

  32. Efimov, D., Polyakov, A., Fridman, E.M., et al., Delay-Dependent Positivity. Application to Interval Observers, Proc. ECC 2015, Linz, 2015.

    Google Scholar 

  33. McCarthy, P., Nielsen, C., and Smith, S., Cardinality Constrained Robust Optimization Applied to a Class of Interval Observers, Am. Control Conf. (ACC), 2014, pp. 5337–5342.

    Google Scholar 

  34. Chebotarev, S., Efimov, D., Raïssi, T., et al., Interval Observers for Continuous-Time LPV Systems with l 1/l 2 Performance, Automatica, 2015, vol. 58, pp. 82–89.

    Article  Google Scholar 

  35. Cacace, F., Germani, A., and Manes, C., A New Approach to Design Interval Observers for Linear Systems, IEEE Trans. Automat. Control, 2015, vol. 99, no. 99, p. 1.

    MathSciNet  Google Scholar 

  36. Mazenc, F. and Bernard, O., Asymptotically Stable Interval Observers for Planar Systems with Complex Poles, IEEE Trans. Automat. Control, 2010, vol. 55, no. 2, pp. 523–527.

    Article  MathSciNet  Google Scholar 

  37. Efimov, D., Perruquetti, W., Raïssi, T., et al., On Interval Observer Design for Time-Invariant Discrete- Time Systems, Proc. Eur. Control Conf. (ECC), Zurich, 2013.

    Google Scholar 

  38. Mazenc, F., Dinh, T.N., and Niculescu, S.I., Interval Observers for Discrete-Time Systems, 51th IEEE Conf. Decision and Control, Hawaii, 2012, 6755–6760.

    Google Scholar 

  39. Mazenc, F., Dinh, T.N., and Niculescu, S.I., Interval Observers for Discrete-Time Systems, Int. J. Robust Nonlin. Control, 2014, vol. 24, pp. 2867–2890.

    Article  MathSciNet  MATH  Google Scholar 

  40. Farina, L., and Rinaldi, S., Positive Linear Systems—Theory and Applications, New York: Wiley, 2000.

    Book  MATH  Google Scholar 

  41. Efimov, D., Perruquetti, W., Raïssi, T., et al., Interval Observers for Time-Varying Discrete-Time Systems, IEEE Trans. Automat. Control 2013, vol. 58, no. 12, pp. 3218–3224.

    Article  MathSciNet  Google Scholar 

  42. Efimov, D., Perruquetti, W., and Richard, J.-P., Interval Estimation for Uncertain Systems with Time- Varying Delays, Int. J. Control, 2013, vol. 86, no. 10, pp. 1777–1787.

    Article  MathSciNet  Google Scholar 

  43. Efimov, D., Perruquetti, W., and Richard, J.-P., On Reduced-Order Interval Observers for Time-Delay Systems, Proc. Eur. Control Conf. (ECC), Zurich, 2013.

    Google Scholar 

  44. Kolmanovskii, V. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht: Kluwer, 1999.

    Book  MATH  Google Scholar 

  45. Pepe, P. and Jiang, Z.-P., A Lyapunov–Krasovskii Methodology for ISS and iISS of Time-Delay Systems, Syst. Control Lett., 2006, vol. 55, pp. 1006–1014.

    Article  MathSciNet  MATH  Google Scholar 

  46. Rami, M., Helmke, U., and Tadeo, F., Positive Observation Problem for Linear Time-Delay Positive Systems, Proc. Mediterranean Conf. Control & Automation (MED’07), 2007, 1–6.

    Chapter  Google Scholar 

  47. Mazenc, F., Niculescu, S.I., and Bernard, O., Exponentially Stable Interval Observers for Linear Systems with Delay, SIAM J. Control Optim., 2012, vol. 50, pp. 286–305.

    Article  MathSciNet  MATH  Google Scholar 

  48. Efimov, D., Polyakov, A., and Richard, J.-P., Interval Observer Design for Estimation and Control of Time-Delay Descriptor Systems, Eur. J. Control, 2015, vol. 23, pp. 26–35.

    Article  MathSciNet  Google Scholar 

  49. Churilov, A., Medvedev, A., and Shepeljavyi, A., Mathematical Model of Non-basal Testosterone Regulation in the Male by Pulse Modulated Feedback, Automatica, 2009, vol. 45, pp. 78–85.

    Article  MathSciNet  MATH  Google Scholar 

  50. Greenhalgh, D. and Khan, Q., A Delay Differential Equation Mathematical Model for the Control of the Hormonal System of the Hypothalamus, the Pituitary and the Testis in Man, Nonlin. Anal., 2009, vol. 71, pp. e925–e935.

    Article  MATH  Google Scholar 

  51. Bolajraf, M., Ait Rami, M., and Helmke, U.R., Robust Positive Interval Observers for Uncertain Positive Systems, Proc. 18th IFAC World Congr., 2011, 14330–14334.

    Google Scholar 

  52. Chen, K., Goh, L., He, G., et al., Identification of Nucleation Rates in Droplet-Based Microfluidic Systems, Chem. Eng. Sci., 2012, vol. 77, pp. 235–241.

    Article  Google Scholar 

  53. Goh, L., Chen, K., Bhamidi, V., et al., A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems, Crystal Growth Design, 2010, vol. 10, no. 6, pp. 2515–2521.

    Article  Google Scholar 

  54. Efimov, D., Raïssi, T., Chebotarev, S., et al., Interval State Observer for Nonlinear Time-Varying Systems, Automatica, 2013, vol. 49, no. 1, pp. 200–205.

    Article  MathSciNet  MATH  Google Scholar 

  55. Back, J. and Astolfi, A., Design of Positive Linear Observers for Positive Linear Systems via Coordinate Transformations and Positive Realizations, SIAM J. Control Optim., 2008, vol. 47, no. 1, pp. 345–373.

    Article  MathSciNet  MATH  Google Scholar 

  56. Ait Rami, M., Cheng, C., and de Prada, C., Tight Robust Interval Observers: An LP Approach, Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, 2008, 2967–2972.

    Google Scholar 

  57. Löfberg, J., Automatic Robust Convex Programming, Optim., Methods Software, 2012, vol. 27, no. 1, pp. 115–129.

    Article  MATH  Google Scholar 

  58. Efimov, D., Raïssi, T., Perruquetti, W., et al., Estimation and Control of Discrete-Time LPV Systems Using Interval Observers, Proc. 52nd IEEE Conf. Decision and Control, Florence, 2013.

    Google Scholar 

  59. Polyak, B.T., Nazin, S.A., Durieu, C., et al., Ellipsoidal Parameter or State Estimation under Model Uncertainty, Automatica, 2004, vol. 40, no. 7, pp. 1171–1179.

    Article  MathSciNet  MATH  Google Scholar 

  60. Alamo, T., Bravo, J., and Camacho, E., Guaranteed State Estimation by Zonotopes, Automatica, 2005, vol. 41, no. 6, pp. 1035–1043.

    Article  MathSciNet  MATH  Google Scholar 

  61. Raïssi, T., Ramdani, N., and Candau, Y., Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations, Automatica, 2004, vol. 40, pp. 1771–1777.

    Article  MATH  Google Scholar 

  62. Jaulin, L., Kieffer, M., Didrit, O., et al., Applied Interval Analysis, London: Springer, 2001.

    Book  MATH  Google Scholar 

  63. Thabet, R.E.H., Raïssi, T., Combastel, C., et al., An Effective Method to Interval Observer Design for Time-Varying Systems, Automatica, 2014, vol. 50, no. 10, pp. 2677–2684.

    Article  MathSciNet  MATH  Google Scholar 

  64. Amato, F., Pironti, A., and Scala, S., Necessary and Sufficient Conditions for Quadratic Stability and Stabilizability of Uncertain Linear Time-Varying Systems, IEEE Trans. Automat. Control, 1996, vol. 41, pp. 125–128.

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhu, J. and Johnson, C.D., Unified Canonical Forms for Linear Time-Varying Dynamical Systems under D-similarity Transformations, part I, Southeastern Sympos. Syst. Theory, 1989, 74–81.

    Google Scholar 

  66. Zhu, J. and Johnson, C.D., Unified Canonical Forms for Linear Time-Varying Dynamical Systems under D-similarity Transformations, part II, Southeastern Sympos. Syst. Theory, 1989, 57–63.

    Google Scholar 

  67. Zhu, J. and Johnson, C.D., Unified Canonical Forms for Matrices Over a Differential Ring, Linear Algebra Appl., 1991, vol. 147, no. 0, pp. 201–248.

    Article  MathSciNet  MATH  Google Scholar 

  68. Efimov, D., Raïssi, T., and Zolghadri, A., Stabilization of Nonlinear Uncertain Systems Based on Interval Observers, Proc. 50th IEEE CDC-ECC, Orlando, 2011, 8157–8162.

    Google Scholar 

  69. Efimov, D., Raïssi, T., and Zolghadri, A., Control of Nonlinear and LPV Systems: Interval Observer-Based Framework, IEEE Trans. Automat. Control, 2013, vol. 58, no. 3, pp. 773–782.

    Article  Google Scholar 

  70. Cai, X., Lv, G., and Zhang, W., Stabilisation for a Class of Nonlinear Uncertain Systems Based on Interval Observers, Control Theory Appl. IET, 2012, vol. 6, no. 13, pp. 2057–2062.

    Article  MathSciNet  Google Scholar 

  71. Mazenc, F., Dinh, T.N., and Niculescu, S.I., Robust Interval Observers and Stabilization Design for Discrete-time Systems with Input and Output, Automatica, 2013, vol. 49, pp. 3490–3497.

    Article  MathSciNet  Google Scholar 

  72. Mazenc, F. and Bernard, O., ISS Interval Observers for Nonlinear Systems Transformed into Triangular Systems, Int. J. Robust Nonlin. Control, 2014, vol. 24, no. 7, pp. 1241–1261.

    Article  MathSciNet  MATH  Google Scholar 

  73. Mazenc, F. and Malisoff, M., New Technique for Stability Analysis for Time-Varying Systems with Delay, Proc. 53th IEEE Conf. Decision and Control, Los Angeles, 2014, 1215–1220.

    Google Scholar 

  74. Puig, V., Stancu, A., Escobet, T., et al., Passive Robust Fault Detection Using Interval Observers. Application to the DAMADICS Benchmark Problem, Control Eng. Practice, 2006, vol. 14, pp. 621–633.

    Article  Google Scholar 

  75. Blesa, J., Puig, V., and Bolea, Y., Fault Detection Using Interval LPV Models in an Open-Flow Canal, Control Eng. Practice, 2010, vol. 18, no. 5, pp. 460–470.

    Article  Google Scholar 

  76. Blesa, J., Rotondo, D., Puig, V., et al., FDI and FTC of Wind Turbines Using the Interval Observer Approach and Virtual Actuators/Sensors, Control Eng. Practice, 2014, vol. 24, pp. 138–155.

    Article  Google Scholar 

  77. Efimov, D., Li, S., Hu, Y., et al., Application of Interval Observers to Estimation and Control of Air-Fuel Ratio in a Direct Injection Engine, Proc. ACC, Chicago, 2015.

    Google Scholar 

  78. Goffaux, G., Remy, M., andWouwer, A.V., Continuous-Discrete Confidence Interval Observer—Application to Vehicle Positioning, Inform. Fusion, 2013, vol. 14, no. 4, pp. 541–550.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Efimov.

Additional information

Original Russian Text © D. Efimov, T. Raïssi, 2016, published in Avtomatika i Telemekhanika, 2016, No. 2, pp. 5–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, D., Raïssi, T. Design of interval observers for uncertain dynamical systems. Autom Remote Control 77, 191–225 (2016). https://doi.org/10.1134/S0005117916020016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916020016

Keywords

Navigation