Skip to main content
Log in

Using New Bioinformatics Strategies at the Design Stage of Genome-edited Plants (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The identification of risks associated with novel agricultural products of plant origin obtained via genome editing is an important aspect of genetic engineering. An extensive discussion is currently ongoing worldwide to clarify the similarities and differences between the “old” risks of “classic” GM plants and the “new” ones associated with genome editing, the lack of existing methods for identification and assessment of new risks. We propose here the concept of “safe by design” as applied to protection that is a new interesting tool that introduces good known standards of safety into plant bioengineering. This approach states that design options are identified to minimize or prevent risks and off-target of genome editing at the concept stage. The correlation between experimentally determined and in silico predicted off-target gRNA activity is a major challenge in the CRISPR system application. Today the most studies are focused on efficiency of gRNA design, while we pay attention specifically to the bioinformatics search and study of potential promoters, as the potential risk associates with a possible unplanned change in the transcriptional activity of promoters. We conveyed these strategies in the form of a risk assessment framework for regulation of new genetic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zhu, Y., Biomed Res. Int., 2022, vol. 2022, p. 9978571. https://doi.org/10.1155/2022/9978571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Eriksson, D., Custers, R., Edvardsson Bjornberg, K., Hansson, S.O., Purnhagen, K., Qaim, M., et al., Trends Biotechnol., 2020, vol. 38, pp. 231–234. https://doi.org/10.1016/j.tibtech.2019.12.002

    Article  PubMed  CAS  Google Scholar 

  3. Parrott, W., Physiol. Plant., 2018, vol. 164, no. 4, pp. 406–411. https://doi.org/10.1111/ppl.12756

    Article  PubMed  CAS  Google Scholar 

  4. Yunzhen, L. and Wenhao, Y., Sci. China Life Sci., 2020, vol. 63, no. 9, pp. 1406–1409. https://doi.org/10.1007/s11427-020-1693-4

    Article  Google Scholar 

  5. Korotkov, E.V., Yakovleva, I.V., and Kamionskaya, A.M., Appl. Biochem. Microbiol., 2021, vol. 57, no. 2, pp. 271–279. https://doi.org/10.1134/S000368382102006X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Konstantakos, V., Nentidis, A., Krithara, A., and Paliouras, G., Nucleic Acids Res., vol. 50, no. 7, pp. 3616–3637. https://doi.org/10.1093/nar/gkac192

  7. Yan, J., Chuai, G., Zhou, C., Zhu, Ch., Yang, J., Zhang, Ch., Gu, F., Xu, H., et al., Brief. Bioinf., 2018, vol. 19, pp. 721–724. https://doi.org/10.1093/bib/bbx001

    Article  CAS  Google Scholar 

  8. Modrzejewski, D., Hartung, F., Sprink, T., Krause, D., Kohl, Ch., and Wilhelm, R., Environ. Evid., 2019, vol. 8, p. 27. https://doi.org/10.1186/s13750-019-0171-5

    Article  Google Scholar 

  9. Modrzejewski, D., Hartung, F., Lehnert, H., Sprink, T., Kohl, C., Keilwagen, J., and Wilhelm, R., Front. Plant Sci., 2020, vol. 11. https://doi.org/10.3389/fpls.2020.574959

  10. Spence, N., Emerg. Top Life Sci, 2020, vol. 4, no. 5, pp. 449–452. https://doi.org/10.1042/ETLS20200343

    Article  PubMed  Google Scholar 

  11. Hulme, Ph.E., BioScience, 2021, vol. 71, no. 7, pp. 708–721. https://doi.org/10.1093/biosci/biab019

    Article  PubMed  PubMed Central  Google Scholar 

  12. UN News. https://news.un.org/en/story/2021/-03/1087032.

  13. CAST 2022. Council for Agricultural Science and Technology. www.cast-science.org.

  14. Lassoued, R., Macall, D., Hesseln, H., Phillips, P.W.B., and Smyth, S.J., Transgen. Res., 2019, vol. 28, pp. 247–256. https://doi.org/10.1007/s11248-019-00118-5

    Article  CAS  Google Scholar 

  15. Hua, K., Zhang, J., Botella, J.R., Ma, C., Kong, F., Liu, B., and Zhu, J.K., Mol. Plant., 2019, vol. 12, no. 8, pp. 1047–1059. https://doi.org/10.1016/j.molp.2019.06.009

    Article  PubMed  CAS  Google Scholar 

  16. Brende, B., In The Global Risks Report 2020 World Economic Forum, Zeneva, Switzerland, Washington, USA, 2019, 15th ed., pp. 9–10.

  17. Bogner, A. and Torgersen, H., Policy. Front. Plant Sci, 2018, vol. 9, p. 1884. https://doi.org/10.3389/fpls.2018.01884

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hellstrom, T., Technol. Soc., 2009, vol. 31, pp. 325–331. https://doi.org/10.1016/j.techsoc.2009.06.002

    Article  Google Scholar 

  19. Dragavtsev, V., Academician Dragavtsev’s Protest against the Presidium of the Russian Academy of Sciences “Give GMO Norms”. https://rossaprimavera.ru/article/04f0c499.

  20. Fagan, J., Antoniou, M., and Robinson, Cl., GMO Myths and Truths: A Citizen’s Guide to the Evidence on the Safety and Efficacy of Genetically Modified Crops and Foods, Earth Open Source, 2020.

    Google Scholar 

  21. Chuchulina, E.O., Bull. Sci., 2019, vol. 4, no. 6, pp. 130–134.

    Google Scholar 

  22. CBD 2012. Guidance on Risk Assessment of Living Modified Organisms. Convention on Biological Diversity. UNEP/CBD/BS/COP-MOP/6/13/Add.1; 2012. www.cbd.int/doc/meetings/bs/mop-06/official/mop-06-13-add1-en.pdf.

  23. Guidelines for Assessing the Impact of Genetically Modified Organisms on the Environment and Health; In 2 Parts, Part 1: Introductory Information, Accompanying Texts to Block Diagrams, Moscow, Russia: ISEU, 2005.

  24. European Commission 2001. Directive 2001/18/EC of The European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Envronment of Genetically Modified Organisms. https://eur-lex.europa.eu/legal-content/EN/TXT/-HTML/?uri=CELEX:32001L0018&from=EN.

  25. GSO 2141:2011. 2011 General Requirements for Genetically Modified Unprocessed Agricultural Products. www.gso.org.sa/store/standards/GSO:563263/GSO%-202141:2011.

  26. Order of the Ministry of Agriculture of the Russian Federation On Approval of the Methodology for the Production of Examinations (studies) of Biological Safety of Genetically Engineered Plants for Growing (release into the environment) on the Territory of the Russian Federation, 2020. http://base.garant.ru/400229383/.

  27. USDA—Animal and Plant Health Inspection Service, Fed. Regist. 85, 29790, 2020. www.govinfo.gov/content/pkg/FR-2020-05-18/html/2020-10638.htm.

    Google Scholar 

  28. Lema, M.A., J. Regul. Sci., 2021, vol. 9, no. 1, pp. 1–15. https://doi.org/10.21423/jrs-v09i1lema

    Article  Google Scholar 

  29. USDA 2019. MAFF Guidance for the Handling of Genome Edited Organisms under the Cartagena Act. https://apps.fas.usda.gov/newgainapi/api/Report/-DownloadReportByFileName?fileName=MAFF-%20Guidance%20for%20the%20Handling%20of%-20Genome%20Edited%20Organisms%20under%-20the%20Cartagena%20Act_Tokyo_Japan_11-15-2019.

  30. USDA 2019. Final MAFF Guidelines for the Handling of Genome Edited Feed and Feed Additives. https://apps.fas.usda.gov/newgainapi/api/Report/-DownloadReportByFileName?fileName=Final%-20MAFF%20Guidelines%20for%20the%20Handling-%20of%20Genome%20Edited%20Feed%20and%-20Feed%20Additives%20_Tokyo_Japan_03-22-2020.

  31. USDA 2019. Japan Modifies Handling Procedures for Genome Edited Foods. https://www.fas.usda.gov/data/japan-japan-modifies-handling-procedures-geno-me-edited-foods.

  32. Draft Federal Law no. 134176-8 “On Amendments to the Federal Law “On State Regulation in the Sphere of Genetic Engineering Activities”, 2022. https://sozd.duma.gov.ru/bill/134176-8#bh_histras.

  33. Schiemann, J., Robienski, J., Schleissing, S., Spok, A., Sprink, T., and Wilhelm, R.A., Front. Plant Sci., 2020, vol. 11, p. 284. https://doi.org/10.3389/fpls.2020.00284

    Article  PubMed  PubMed Central  Google Scholar 

  34. Globus, R. and Qimrom, U., Cell Biochem. J., 2018, vol. 119, no. 2, pp. 1291–1298. https://doi.org/10.1002/jcb.26303

    Article  CAS  Google Scholar 

  35. Metje-Sprink, J., Front. Plant Sci., 2019, vol. 9, pp. 133–141. https://doi.org/10.3389/fpls.2018.01957

    Article  Google Scholar 

  36. Ahmad, N., Rahman, M., Mukhtar, Z., Zafar, Y., and Zhang, B., J. Cell Physiol., 2020, vol. 235, no. 2, pp. 666–682.

    Article  PubMed  CAS  Google Scholar 

  37. Sturme, M.H.J., van Berg, J.P., Bouwman, L.M.S., De Schrijver, A., de Maagd, R.A., Kleter, G.A., and Battaglia-de, WildeE., ACS Agric. Sci. Technol., 2022, vol. 2, pp. 192–201. https://doi.org/10.1021/acsagscitech.1c00270

    Article  CAS  Google Scholar 

  38. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., et al., Mol. Plant Pathol., 2016, vol. 17, no. 7, pp. 1140–1153. https://doi.org/10.1111/mpp.12375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Arndell, T., Sharma, N., Langridge, P., Baumann, U., Watson-Haigh, N.S., and Whitford, R., BMC Biotechnol., 2019, vol. 19, no. 1, p. 71. https://doi.org/10.1186/s12896-019-0565-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Walton, R.T., Christie, K.A., Whittaker, M.N., and Kleinstiver, B.P., Science, 2020, vol. 368, pp. 290–296. https://doi.org/10.1126/science.aba8853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Murugan, K., Seetharam, A.S., Severin, A.J., and Sashital, D.G., J. Biol. Chem., 2020, vol. 295, no. 17, pp. 5538–5553. https://doi.org/10.1074/jbc.RA120.012933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hong, Y., Meng, J., He, X., Zhang, Y., Liu, Y., Zhang, C., Qi, H., and Luan, Y., Phytopathology, 2021, vol. 11, no. 6. https://doi.org/10.1094/PHYTO-08-20-0360-R

  43. Malnoy, M., Viola, R., Junget, M.-H., Koo, O.J., Kim, S., Kim, J.S., et al., Front. Plant Sci., 2016, vol. 7, p. 1904. https://doi.org/10.3389/fpls.2016.01904

    Article  PubMed  PubMed Central  Google Scholar 

  44. Si, X., Zhang, H., Wang, Y., Chen, K., and Gao, C., Nat. Protoc., 2020, vol. 15, pp. 338–363. https://doi.org/10.1038/s41596-019-0238-3

    Article  PubMed  CAS  Google Scholar 

  45. Graham, N., Patil, G.B., Bubeck, D.M., Dobert, R.C., Glenn, K.C., Gutsche, A.T., et al., Plant Physiol., 2020, vol. 183, no. 40, pp. 1453–1471. https://doi.org/10.1104/pp.19.01194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hahn, F. and Nekrasov, V., Plant Cell Rep., vol. 38, no. 4, pp. 437–441. https://doi.org/10.1007/s00299-018-2355-9

  47. Ahmad, Sh., Wei, X., Sheng, Zh., Hu, P., and Tang, Sh., Brief Funct. Genomics, 2020, vol. 19, no. 01, pp. 26–39. https://doi.org/10.1093/bfgp/elz041

    Article  PubMed  CAS  Google Scholar 

  48. Faal, G.P., Farsi, M., Seifi, A., and Kakhki, A.M., Mol. Biol. Rep., vol. 47, pp. 3369–3376. https://doi.org/10.1007/s11033-020-05409-3

  49. Waterworth, W.M., Drury, G.E., Bray, C.M., and Westet, Ch.E., New Phytol., 2011, vol. 192, pp. 805–822. https://doi.org/10.1111/j.1469-8137.2011.03926.x

    Article  PubMed  CAS  Google Scholar 

  50. O’Conner, S. and Li, L., Front. Plant Sci., 2020, vol. 11, p. 600117. https://doi.org/10.3389/fpls.2020.600117

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ellens, K.W., Levac, D., Pearson, C., Savoie, A., Strand, N., Louter, J., and Tibelius, C., Transgenic Res., 2019, vol. 28, suppl. 2, pp. 165–168. https://doi.org/10.1007/s11248-019-00153-2

    Article  PubMed  CAS  Google Scholar 

  52. Xu, W., Fu, W., Zhu, P., Li, Z., Wang, C., Wang, C., et al., Int. J. Mol. Sci., 2019, vol. 20, no. 17, p. 4125. https://doi.org/10.3390/ijms20174125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Weng, M.L., Becker, C., Hildebrandt, J., Neumann, M., Rutter, M.T., Shaw, R.G., et al., Genetics, 2019, vol. 211, no. 2, pp. 703–714. https://doi.org/10.1534/genetics.118.301721

    Article  PubMed  CAS  Google Scholar 

  54. Young, J., Zastrow-Hayes, G., Deschamps, S., et al., Sci. Rep., 2019, vol. 9, p. 6729. https://doi.org/10.1038/s41598-019-43141-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., et al., Genome Biol., 2018, vol. 19, p. 84. https://doi.org/10.1186/s13059-018-1458-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, J., Manghwar, H., Sun, L., Wang, P., Wang, G., Sheng, H., et al., Plant Biotechnol. J., 2019, vol. 17, no. 5, pp. 858–868. https://doi.org/10.1111/pbi.13020

    Article  PubMed  CAS  Google Scholar 

  57. Tsai, H., Missirian, V., Ngo, K.J., Tran, R.K., Chan, S.R., Sundaresan, V., and Comai, L., Plant Physiol., 2013, vol. 161, no. 4, pp. 1604–1614. https://doi.org/10.1104/pp.112.213256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Song, H., Park, J.-I., Hwang, B.-H., Yi, H., Kim, H., and Hur, Y., Agronomy, 2020, vol. 10, no. 4, p. 602. https://doi.org/10.3390/agronomy10040602

    Article  CAS  Google Scholar 

  59. Korotkov, E.V., Suvorova, Y.M., Nezhdanova, A.V., Gaidukova, S.E., Yakovleva, I.V., Kamionskaya, A.M., and Korotkova, M.A., Symmetry, 2021, vol. 13, no. 6, pp. 917–937. https://doi.org/10.3390/sym13060917

    Article  Google Scholar 

  60. Suvorova, Y.M., Kamionskaya, A.M., and Korotkov, E.V., BMC Bioinform, 2022, vol. 22, no. 1, p. 42.https://doi.org/10.1186/s12859-021-03977-0

  61. Korotkov, E.V., Kamionskaya, A.M., and Suvorova, Yu.M., Biotechnologiya, 2020, vol. 36, no. 4, pp. 15–20. https://doi.org/10.21519/0234-2758-2020-36-4-15-20

    Article  Google Scholar 

  62. Korotkova, M.A., Kamionskya, A.M., and Korotkov, E.V., in Proceedings of the Journal of Physics: Conference Series; The VI Int. Conference on Laser&Plasma Researches and Technologies, LaPlas, USA, Moscow, Russia, 2020. https://doi.org/10.1088/1742-6596/1686/1/012031

  63. Salieri, B., Barruetabena, L., Rodríguez-Llopis, I., Jacobsen, N.R., Manier, N., Trouiller, B., et al., NanoImpact, 2021, vol. 23. https://doi.org/10.1016/j.impact.2021.100335

  64. EU-SAGE 2022. https://www.eu-sage.eu/genome-search.

  65. Wolt, J.D., Prog. Mol. Biol. Transl. Sci., 2017, vol. 149, pp. 215–241. https://doi.org/10.1016/bs.pmbts

    Article  PubMed  CAS  Google Scholar 

  66. Fister, A.S., Landherr, L., Maximova, S.N., and Guiltinan, M.J., Front. Plant Sci., 2018, vol. 9, p. 26. https://doi.org/10.3389/fpls.2018.00268

    Article  Google Scholar 

  67. Andres, J., Blomeier, T., and Zurbriggen, M.D., Plant Physiol., 2019, vol. 179, pp. 862–884. https://doi.org/10.1104/pp.18.01362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hirsch, C.D. and Springer, N.M., Biochim. Biophys. Acta, Gene Regul. Mech., 2017, vol. 1860, pp. 157–165. https://doi.org/10.1016/j.bbagrm.2016.05.010

    Article  PubMed  CAS  Google Scholar 

  69. Philippines 2022. Memorandum Circular no. 8, Series of 2022. https://www.da.gov.ph/wp-content/uploads/2022/06/mc08_s2022_Revised.pdf.

  70. DBTt 2022, Guidelines for the Safety Assessment of Genome Edited Plants, Government of India: Ministry of Science and Technology, DBTt, 2022. https://dbtindia.gov.in/latest-announcement/guidelines-safety-assessment-genome-edited-plants 2022.

  71. Proposal for a Regulation on Plants Obtained by Certain new Genomic Techniques and their Food and Feed, and Amending Regulation (EU) 2017/625. https://www.europeansources.info/record/proposal-for-a-regulation-on-plants-obtained-by-certain-new-genomic-techniques-and-their-food-and-feed-and-amending-regulation-eu-2017-625/.

  72. Yakovleva, I.V. and Kamionskaya, A.M., Trends Biotechnol., 2022, vol. 40, no. 6, pp. 635–638. https://doi.org/10.1016/j.tibtech.2021.12.004

    Article  PubMed  CAS  Google Scholar 

  73. OGTR 2021. Department of Health of Australia. Overview – status of organisms modified using gene editing and other new technologies. https://www.ogtr.gov.au/resources/publications/overview-status-organisms-modified-using-gene-editing-and-other-new-technologies.

  74. Health Canada 2022, Guidance on the Novelty Interpretation of Products of Plant Breeding, 2022. https://www.canada.ca/en/health-canada/services/-food-nutrition/legislation-guidelines/guidance-documents/guidelines-safety-assessment-novel-foods-derived-plants-microorganisms/guidelines-safety-assessment-novel-foods-2006.html#a5.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yakovleva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, I.V., Kamionskaya, A.M. Using New Bioinformatics Strategies at the Design Stage of Genome-edited Plants (Review). Appl Biochem Microbiol 59, 743–753 (2023). https://doi.org/10.1134/S0003683823060212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060212

Key words:

Navigation