Skip to main content
Log in

The Relationship Between the Composition of Root Exudates and the Efficiency of Interaction of Wheat Plants with Microorganisms

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Plant roots secrete various organic substances into the rhizosphere, which are a source of nutrition for microorganisms and largely determine the nature of plant–microbe interactions. The composition of the main fractions of root exudates in ten modern varieties of wheat was determined: the contents of amino acids, organic acids, and sugars were analyzed. Reliable qualitative and quantitative differences between varieties for individual components of exudates were revealed, which determined the peculiarities of cultivar clustering on this trait. Relationships between exudation and the effectiveness of plant interaction with the growth-promoting rhizobacterium Pseudomonas fluorescens SPB2137 and the phytopathogenic fungus Fusarium culmorum 30 in laboratory systems, as well as with the resistance of the varieties to diseases in the field, were found. The number of P. fluorescens SPB2137 in the root zone positively correlated with the amounts of many amino acids, as well as maltose, secreted by the roots. The stimulating effect of rhizobacteria on root growth positively correlated with the amount of released glucose and melibiose. A relationship between the nature of root exudation and root colonization or the susceptibility of the varieties to F. culmorum 30 was not found. An analysis of the correlations between the incidence of wheat varieties in the field and the intensity of exudation of certain substances, as well as with the biocomposition index of amino acid exudation, was carried out. The role of root exudate components in the formation of effective plant-microbial systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Byerlee, D. and Moya, P., Impacts of International Wheat Breeding Research in the Developing World, 1966–1990, Heisey, P.W., Lantican, M.A., and Dubin, H.J., Eds., Mexico: International Maize and Wheat Improvement Center (CIMMYT), D.F., 1993.

  2. Pingali, P., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 31, pp. 12302–12308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raeboline, A., Nelson, L.E., Ravichandran, K., and Antony, U., J. Ethnic Foods, 2019, vol. 6, p. 8. https://doi.org/10.1186/s42779-019-0011-9

    Article  Google Scholar 

  4. Pearce, S., J. Exp. Bot., 2021, vol. 72, no. 2, pp. 157–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma, R.C., Morgounov, A., Akin, B., Bespalova, L., Lang, L., Litvinenko, M., et al., Crop Sci., 2014, vol. 54, no. 6, pp. 2469–2480.

    Article  Google Scholar 

  6. Li, S., Zhang, C., Li, J., Yan, L., Wang, N., and Xia, L., Plant Commun., 2021, vol. 2, no. 4, p. 100211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elkoca, E., Turan, M., and Donmez, M.F., J. Plant Nutr., 2010, vol. 33, pp. 2104–2119.

    Article  CAS  Google Scholar 

  8. Vessey, J.K., Plant Soil, 2003, vol. 255, pp. 571–586.

    Article  CAS  Google Scholar 

  9. Ryan, P.R., Dessaux, Y., Thomashow, L.S., and Weller, D.M., Plant Soil, 2009, vol. 321, pp. 363–383.

    Article  CAS  Google Scholar 

  10. Kozhemyakov, A.P., Belobrova, S.N., and Orlova, A.G., S.-kh. Biol., 2011, no. 3, pp. 112–115.

  11. Chandran, H., Meena, M., and Swapnil, P., Sustainability, 2021, vol. 13, p. 10986. https://doi.org/10.3390/su131910986

    Article  CAS  Google Scholar 

  12. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Genet. Mol. Biol., 2012, vol. 35, pp. 1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaluvadi, S. and Bennetzen, J.L., Front. Plant Sci, 2018, vol. 9, p.1183. https://doi.org/10.3389/fpls.2018.01183

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kudoyarova, G., Arkhipova, T., Korshunova, T., Bakaeva, M., Loginov, O., and Dodd, I.C., Front. Plant Sci., 2019, vol. 10, p. 1368.https://doi.org/10.3389/fpls.2019.01368

  15. Mohanram, S. and Kumar, P., Ann. Microbiol., 2019, vol. 69, pp. 307–320.

    Article  Google Scholar 

  16. Weller, D.M. and Thomashow, L.S., in Molecular Ecology of Rhizosphere Microorganisms, O’Gara, F., Dowling, D.N., and Boesten, B., Eds., Weinheim: VCH Publisher Inc., 1994, pp. 1–18.

    Google Scholar 

  17. Whipps, J.M., J. Exp. Bot., 2001, vol. 52, pp. 487–511.

    Article  CAS  PubMed  Google Scholar 

  18. Belimov, A., Kojemiakov, A., and Chuvarliyeva, C., Plant Soil, 1995, vol. 173, pp. 29–37.

    Article  CAS  Google Scholar 

  19. Lugtenberg, B. and Kamilova, F., Annu. Rev. Microbiol., 2009, vol. 63, pp. 541–556.

    Article  CAS  PubMed  Google Scholar 

  20. Burgmann, H., Meier, S., Bunge, M., Widmer, F., and Zeyer, J., Environ. Microbiol., 2005, vol. 7, pp. 1711–1724.

    Article  CAS  PubMed  Google Scholar 

  21. Lugtenberg, B.J.J., Dekkers, L., and Bloemberg, G.V., Annu. Rev. Phytopathol., 2001, vol. 39, pp. 461–490.

    Article  CAS  PubMed  Google Scholar 

  22. Kravchenko, L.V., Azarova, T.S., Leonova-Erko, E.I., Shaposhnikov, A.I., Makarova, N.M., and Tikhonovich, I.A., Microbiology (Moscow), 2003, vol. 72, no. 1, pp. 37–41.

    Article  CAS  Google Scholar 

  23. de Werra, P., Huser, A., Tabacchi, R., Keel, C., and Maurhofer, M., Appl. Environ. Microbiol., 2011, vol. 77, no. 8, pp. 2807–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynch, J.M. and Whipps, J.M., Plant Soil, 1990, vol. 129, pp. 1–10.

    Article  CAS  Google Scholar 

  25. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M., Ann. Rev. Plant Biol., 2006, vol. 57, pp. 233–266.

    Article  CAS  Google Scholar 

  26. de Weert, S., Vermeiren, H., Mulders, I.H.M., Kuiper, I., Hendrickx, N., Bloemberg, G.V., Vanderleyden, J., De Mot, R., and Lugtenberg, B.J.J., Mol. Plant–Microbe Interact., 2002, vol. 15, pp. 1173–1180.

    Article  CAS  PubMed  Google Scholar 

  27. Rudrappa, T., Czymmek, K.J., Pare, P.W., and Bais, H.P., Plant Physiol., 2008, vol. 148, pp. 1547–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ling, N., Raza, W., Ma, J., Huang, Q., and Shen, Q., Eur. J. Soil Biol., 2011, vol. 47, pp. 374–379.

    Article  CAS  Google Scholar 

  29. Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., and Xu, Y., Appl. Soil. Ecol., 2013, vol. 64, pp. 15–22.

    Article  Google Scholar 

  30. Ren, L., Huo, H., Zhang, F., Hao, W., Xiao, L., Dong, C., and Xu, G., Plant Signal. Behav., 2016, vol. 11, no. 6, p. e1187357. https://doi.org/10.1080/15592324.2016.1187357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perry, L.G., Alford, E.R., Horiuchi, J., Paschke, M., and Vivanco, J.M., in The Rhizosphere, Pinton, R., Varanini, Z., and Nannipieri, P., Eds., Boca Raton, FL: CRC, 2007, 2nd ed., pp. 297–330.

    Google Scholar 

  32. Broeckling, C.D., Broz, A.K., Bergelson, J., Manter, D.K., and Vivanco, J.M., Appl. Environ. Microbiol., 2008, vol. 74, no. 3, pp. 738–744.

    Article  CAS  PubMed  Google Scholar 

  33. Kravchenko, L.V., Shaposhnikov, A.I., Makarova, N.M., Azarova, T.S., L’vova, K.A., Kostyuk, I.I., Lyapunova, O.A., and Tikhonovich, I.A., Russ. J. Plant Physiol., 2011, vol. 58, no. 5, pp. 936–940.

    Article  CAS  Google Scholar 

  34. Stringlis, I.A., Yu, K., Feussner, K., de Jonge, R., Van Bentum, S., Van Verk, M.C., Berendsen, R.L., Bakker, P.A.H.M., Feussner, I., and Pieterse, C.M.J., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 22, pp. E5213–E5222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cotton, T.E.A., Pe’triacq, P., Cameron, D.D., Meselmani, M.A., Schwarzenbacher, R., Rolfe, S.A., and Ton, J., ISME J., 2019, vol. 13, pp. 1647–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B., Goossens, A., Nutzmann, H.W., Bai, Y., and Osbourn, A., Science, 2019, vol. 364, no. 6440, p. eaau6389. https://doi.org/10.1126/science.aau6389

  37. Prudence, S.M., Newitt, J.T., Worsley, S.F., Macey, M.C., Murrell, J.C., Lehtovirta-Morley, L.E., and Hutchings, M.I., Environ. Microbiome, 2021, vol. 16, p. 12. https://doi.org/10.1186/s40793-021-00381-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, J.B., Gong, X.Y., Khashi u Rahman, M., Tian, Q., Zhou, X.G., and Wu, F.Z., Plant Soil Environ., 2021, vol. 67, pp. 721–728.

    Article  Google Scholar 

  39. Owens, A.G. and Jones, D.L., Soil Biol. Biochem., 2001, vol. 33, pp. 651–657.

    Article  Google Scholar 

  40. Chen, S., Waghmode, T.R., Sun, R., Kuramae, E.E., Hu, C., and Liu, B., Microbiome, 2019, vol. 7, p. 136. https://doi.org/10.1186/s40168-019-0750-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, L., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M.G.A., Schlaeppi, K., and Erb, M., Nat. Commun., 2018, vol. 9, p. 2738. https://doi.org/10.1038/s41467-018-05122-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belimov, A.A., Dodd, I.C., Safronova, V.I., Shaposhnikov, A.I., Azarova, T.S., Makarova, N.M., Davies, W.J., and Tikhonovich, I.A., Ann. Appl. Biol., 2015, vol. 167, pp. 11–25.

    Article  CAS  Google Scholar 

  43. Phillips, D.A., Fox, T.C., King, M.D., Bhuvaneswari, T.V., and Teuber, L.R., Plant Physiol., 2004, vol. 136, pp. 2887–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawasaki, A., Dennis, P.G., Forstner, C., Raghavendra, A.K.H., Mathesius, U., Richardson, A., Delhaize, E., Gilliham, M., Watt, M., and Ryan, P.R., Plant Physiol., 2021, vol. 187, pp. 2279–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yahya, M., Islam, E.U., Rasul, M., Farooq, I., Mahreen, N., Tawab, A., Irfan, M., Rajput, L., Amin, I., and Yasmin, S., Front. Microbiol., 2021, vol. 12, p. 744094. https://doi.org/10.3389/fmicb.2021.744094

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sasse, J., Martinoia, E., and Northen, T., Trends Plant Sci., 2018, vol. 25, no. 1, pp. 25–41.

    Article  Google Scholar 

  47. Tsunoda, T. and van Dam, N.M., Pedobiologia, 2017, vol. 65, pp. 58–67.

    Article  Google Scholar 

  48. Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., and Cheng, Y., Front. Plant Sci., 2021, vol. 12.

  49. Kravchenko, L.V., Makarova, N.M., Azarova, T.S., Provorov, N.A., and Tikhonovich, I.A., Microbiology (Moscow), 2002, vol. 71, no. 4, pp. 444–448.

    Article  CAS  Google Scholar 

  50. Strunnikova, O.K., Shakhnazarova, V.Yu., Vishnevskaya, N.A, Ruchii, A.S, and Chizhevskaya, E.P., Mikol. Fitopatol., 2013, vol. 47, no. 3, pp. 196–203.

    Google Scholar 

  51. Magurran, A.E., Ecological Diversity and Its Measurement, London: Chapman and Hall, 1983.

    Google Scholar 

  52. Gorodnichev, R.M., Pestryakova, L.A., Ushnitskaya, L.A., Levina, S.N., and Davydova, P.V., Metody ekologicheskikh issledovanii. Osnovy statisticheskoi obrabotki dannykh: uchebno-metodicheskoe posobie (Methods of Ecological Research. Fundamentals of Statistical Data Processing: Educational and Methodological Guide), Yakutsk: Izd. Dom SVFU, 2019.

  53. Mandelbrot, B., Fraktal’naya geometriya prirody (Fractal Geometry of Nature), Moscow: Institut komp’yuternykh issledovanii, 2002.

  54. Sergeev, A.P. and Tarasov, D.A., Vvedenie v neirosetevoe modelirovanie: uchebnoe plobie (Introduction to Neural Network Modeling: Tutorial), Yekaterinburg: Ural. Univ., 2017.

  55. Gudfellou, Ya., Bendzhio, I., and Kurvill’, A., Glubokoe obuchenie (Deep Learning), Moscow: DMK Press, 2018.

  56. Naher, U.A., Radziah, O., Halimi, M.S., Shamsuddin, Z.H., and Mohd Razi, I., Res. J. Microbiol., 2008, vol. 3, pp. 580–587.

    Article  Google Scholar 

  57. Kuzmicheva, Yu.V., Shaposhnikov, A.I., Azarova, T.S., Petrova, S.N., Naumkina, T.S., Borisov, A.Yu., Belimov, A.A., et al., Russ. J. Plant Physiol., 2014, vol. 61, no. 1, pp. 112–118.

    Article  CAS  Google Scholar 

  58. Inceoglu, Ö., Salles, J.F., and van Elsas, J.D., Microbiol. Ecol., 2012, vol. 63, pp. 460–470.

    Article  CAS  Google Scholar 

  59. Kuzmicheva, Y.V., Shaposhnikov, A.I., Petrova, S.N., Makarova, N.M., Tychinskaya, I.L., Puhalsky, J.V., et al., Plant Soil, 2017, vol. 419, pp. 83–96.

    Article  CAS  Google Scholar 

  60. Shaposhnikov, A.I., Morgunov, A., Akin, B., Makarova, N.M., Belimov, A.A., and Tikhonovich, I.A., S.-kh. Biol., 2016, vol. 51, no. 1, pp. 58–78.

    Google Scholar 

  61. Beleggia, R., Rau, D., Laidò, G., Platani, C., Nigro, F., Fragasso, M., De Vita, P., Scossa, F., Fernie, A.R., Nikoloski, Z., and Papa, R., Mol. Biol. Evol., 2016, vol. 33, pp. 1740–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F., and Papa, R., Front. Plant Sci., 2017, vol. 8, p. 2124. https://doi.org/10.3389/fpls.2017.02124

    Article  PubMed  PubMed Central  Google Scholar 

  63. Qu, Q., Li, Y., Zhang, Z., Cui, H., Zhao, Q., Liu, W., Lu, T., and Qian, H., J. Hazard Mater., 2021, vol. 411, p. 125137. https://doi.org/10.1016/j.jhazmat.2021.125137

    Article  CAS  PubMed  Google Scholar 

  64. O’Neal, L., Vo, L., and Alexandre, G., Appl. Environ. Microbiol., 2020, vol. 86, no. 15, p. e01026-20. https://doi.org/10.1128/AEM.01026-20

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tsavkelova, E.A., Klimova, S.Yu., Cherdyntseva, T.A., and Netrusov, L.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 2, pp. 117–126.

    Article  CAS  Google Scholar 

  66. Patten, C.L., Blakney, A.J., and Coulson, T.J., Crit. Rev. Microbiol., 2013, vol. 39, no. 4, pp. 395–415.

    Article  CAS  PubMed  Google Scholar 

  67. Syrova, D.S., Shaposhnikov, A.I., Yuzikhin, O.S., and Belimov, A.A., Appl. Biochem. Microbiol., 2022, vol. 58, no. 1, pp. 1–18.

    Article  CAS  Google Scholar 

  68. Glick, B.R., Biljana, T., Czarny, J., Cheng, Z., Duan, J., and McConkey, B., Crit. Rev. Plant Sci., 2007, vol. 26, pp. 227–242.

    Article  CAS  Google Scholar 

  69. Bogatykh, B.A., Fraktal’naya priroda zhivogo: sistemnoe issledovanie biologicheskoi evolyutsii i prirody soznaniya (The Fractal Nature of Living Things: A Systematic Study of Biological Evolution and the Nature of Consciousness), Moscow: LIBEKOM, 2012.

  70. Mandelbrot, B., Fraktal’naya geometriya prirody (Fractal Geometry of Nature), Moscow: Institut komp’yuternykh issledovanii, 2002.

  71. Gafarov, F.M. and Galimyanov, A.F., Iskusstvennye neironnye seti i prilozheniya: uchebnoe posobie (Artificial Neural Networks and Applications: Tutorial), Kazan: Kazan. Univ., 2018.

  72. Vorob'ev, N.I. and Selina, M.V., Perm. Agrarn. Vestn., 2021, no. 4 (36), pp. 92–99.

  73. Keller, B., Wicker, T., and Krattinger, S.G., Annu. Rev. Phytopathol., 2018, vol. 56, pp. 67–87.

    Article  CAS  PubMed  Google Scholar 

  74. Wulff, B.B. and Krattinger, S.G., Curr. Opin. Biotechnol., 2022, vol. 73, pp. 270–275.

    Article  CAS  PubMed  Google Scholar 

  75. Dracatos, P.M., Haghdoust, R., Singh, D., and Park, R.F., New Phytol., 2018, vol. 218, no. 2, pp. 453–462.

    Article  PubMed  Google Scholar 

  76. Provorov, N.A., Tikhonovich, I.A., and Vororb’ev, N.I., Russ. J. Genet., 2016, vol. 52, no. 2, pp. 117–124.

    Article  CAS  Google Scholar 

  77. Rengel, Z., Plant Soil, 2002, vol. 245, pp. 59–70.

    Article  CAS  Google Scholar 

  78. Wang, J., Li, R., Zhang, H., Wei, G., and Li, Z., BMC Microbiol., 2020, vol. 20, p. 38. https://doi.org/10.1186/s12866-020-1708-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.S. Ulyanich (All-Russia Research Institute for Agricultural Microbiology) for constructing Fig. 4.

Funding

The work on plant cultivation and analysis of root exudates was supported financially by the Russian Foundation for Basic Research (project no. 15-04-09023). Mathematical and bioinformatics work was supported by the Russian Science Foundation (project no. 22-26-00341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belimov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, A.I., Belimov, A.A., Azarova, T.S. et al. The Relationship Between the Composition of Root Exudates and the Efficiency of Interaction of Wheat Plants with Microorganisms. Appl Biochem Microbiol 59, 330–343 (2023). https://doi.org/10.1134/S000368382303016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382303016X

Keywords:

Navigation