Skip to main content
Log in

The Probiotic Properties of Saccharomycetes (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this review was to summarize and analyze information on the molecular genetic basis and methods for studying the probiotic activities of Saccharomycetes fungi, the mechanisms of their physiological action, and their application in biotechnology. The relevance of research in this area is confirmed by the dynamics of the growth of publications. The effectiveness of Saccharomyces boulardii in the treatment and prevention of diarrhea of various etiologies, relapses of Clostridium difficile infection, and the side effects of Helicobacter pylori infection therapy has been established with a high level of evidence. The genetic, cytological, cultural, and biochemical features of S. boulardii determine its probiotic activities. Other Saccharomyces strains with probiotic potential are most often isolated from national fermented plant and dairy products. A unified methodology for studying the probiotic properties of yeast has not yet been created; clinical trials involving people are needed to confirm their status. Strains of the species Saccharomyces cerevisiae and Kluyveromyces marxianus, which have an international safety status, are promising probiotics. Possible mechanisms of the physiological actions of Saccharomycetes include antimicrobial and antitoxic, trophic, antisecretory and anti-inflammatory effects. Some of the mechanisms of yeast probiotic action differ from those of bacteria, and not all of them are as yet understood. Saccharomycetes probiotics can be used to improve the biological value, quality, and safety of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Nielsen, J., Biotechnol. J., 2019, vol. 14, no. 3. https://doi.org/10.1002/biot.201800421

  2. Hatoum, R., Labrie, S., and Fliss, I., Front. Microbiol., 2012, vol. 19, no. 3.https://doi.org/10.3389/fmicb.2012.00421

  3. Staniszewski, A. and Kordowska-Wiater, M., Foods, 2021, vol. 10, no. 6. https://doi.org/10.3390/foods10061306

  4. Vemuri, R., Shankar, E.M., Chieppa, M., Eri, R., and Kavanagh, K., Microorganisms, 2020, vol. 8, no. 4. https://doi.org/10.3390/microorganisms8040483

  5. Nash, A.K., Auchtung, T.A., Wong, M.C., Smith, D.P., Gesell, J.R., Ross, M.C., et al., Microbiome, 2017, vol. 5, no. 1. https://doi.org/10.1186/s40168-017-0373-4

  6. Hill, C., Guarner, F., Reid, G., Gibson, G.R., et al., Nat. Rev. Gastroenterol. Hepatol., 2014, vol. 11, pp. 506–514.

    Article  PubMed  Google Scholar 

  7. Ryabtseva, S.A., Sazanova, S.N., and Dubinina, AA., Sovrem. Nauka Innovatsii, 2019, no. 2 (26), pp. 138–151.

  8. Pais, P., Almeida, V., Yılmaz, M., and Teixeira, M.C., J. Fungi (Basel), 2020, vol. 6, no. 2, p. 78. https://doi.org/10.3390/jof6020078

    Article  CAS  Google Scholar 

  9. Lazo- Vélez, M.A., Serna-Saldívar, S.O., Rosales-Medina, M.F., Tinoco-Alvear, M., and Briones-García, M., J. Appl. Microbiol., 2018, vol. 125, pp. 943–951.

    PubMed  Google Scholar 

  10. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016, EFSA J., 2017, vol. 15, p. 4366. https://doi.org/10.2903/j.efsa.2017.4663

  11. McFarland, L.V., World J. Gastroenterol., 2010, vol. 16, no. 18, pp. 2202–2222. https://doi.org/10.3748/wjg.v16.i18.2202

    Article  PubMed  PubMed Central  Google Scholar 

  12. McFarland, L. and Bernasconi, P., Microb. Ecol. Health Dis., 1993, vol. 6, pp. 157– 171.

    Google Scholar 

  13. McCullough, M.J., Clemons, K.V., McCusker, J.H., and Stevens, D.A., J. Clin. Microbiol., 1998, vol. 36, pp. 2613–2617. https://doi.org/10.1128/JCM.36.9.2613-2617.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Czerucka, D., Piche, T., and Rampal, P., Aliment. Pharmacol. Ther., 2007, vol. 26, pp. 767–778.

    Article  CAS  PubMed  Google Scholar 

  15. McFarland, L.V., A meta-analysis and systematic review, Antibiotics (Basel), 2015, vol. 13, pp. 160–178.

    Article  Google Scholar 

  16. Szajewska, H., Horvath, A., and Kołodziej, M., Aliment. Pharmacol. Ther., 2015, vol. 41, no. 12, pp. 1237–1245.

  17. Szajewska, H. and Kołodziej, M., Aliment. Pharmacol. Ther., 2015, vol. 42, no. 7, pp. 793–801.

    Article  CAS  PubMed  Google Scholar 

  18. Moré, M.I. and Vandenplas, Y., Clin. Med. Insights Gastroenterol., 2018, vol. 11. https://doi.org/10.1177/1179552217752679

  19. Kaźmierczak-Siedlecka, K., Ruszkowski, J., Fic, M., Folwarski, M., and Makarewicz, W., Curr. Microbiol., 2020, vol. 77, no. 9, pp. 1987–1996. https://doi.org/10.1007/s00284-020-02053-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Z., Zhu, G., Li, C., Lai, H., Liu, X., and Zhang, L., Nutrients, 2021, vol. 13, no. 12, p. 4319. https://doi.org/10.3390/nu13124319

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaibysheva, V.O. and Nikonov, E.L., Probiotiki s pozitsii dokazatel’noi meditsiny, Dokazat. Gastroenterol., 2019, no. 8 (3), pp. 45–54. https://doi.org/10.17116/dokgastro2019803145

  22. Mitterdorfer, G., Mayer, H.K., Kneifel, W., and Viernstein, H., J. Appl. Microbiol., 2002, vol. 93, pp. 521–530.

    Article  CAS  PubMed  Google Scholar 

  23. Fietto, J.L., Araújo, R.S., Valadão, F.N., Fietto, L.G., Brandão, R.L., Neves, M.J., et al., Can. J. Microbiol., 2004, vol. 50, pp. 615–621.

    Article  CAS  PubMed  Google Scholar 

  24. Edwards-Ingram, L., Gitsham, P., Burton, N., Warhurst, G., Clarke, I., Hoyle, D., et al., Appl. Environ. Microbiol., 2007, vol. 73, pp. 2458–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y., Wu, Q., Wu, X., Algharib, S.A., Gong, F., Hu, J., et al., Int. J. Biol. Macromol., 2021, vol. 173, pp. 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125

    Article  CAS  PubMed  Google Scholar 

  26. Fortin, O., Aguilar-Uscanga, B., Vu, K.D., Salmieri, S., and Lacroix, M., Nutr. Cancer, 2018, vol. 70, no. 1, pp. 83–96. https://doi.org/10.1080/01635581.2018.1380204

    Article  CAS  PubMed  Google Scholar 

  27. Rajkowska, K. and Kunicka-Styczyńska, A., Biotechnol. Biotechnol. Equip., 2009, vol. 23, pp. 662–665.

    Article  Google Scholar 

  28. Fernández-Pacheco, P., Pintado, C., Briones Pérez, A., and Arévalo-Villena, M.J., Fungi (Basel), 2021, vol. 7, no. 3, p. 177. https://doi.org/10.3390/jof7030177

    Article  CAS  Google Scholar 

  29. Datta, S., Timson, D.J., and Annapure, U.S., J. Sci. Food Agric., 2017, vol. 97, no. 9, pp. 3039–3049. https://doi.org/10.1002/jsfa.8147

    Article  CAS  PubMed  Google Scholar 

  30. Offei, B., Vandecruys, P., De Graeve, S., Foulquié-Moreno, M.R., and Thevelein, J.M., Genome Res., 2019, vol. 9, pp. 1478–1494. https://doi.org/10.1101/gr.243147.118

    Article  CAS  Google Scholar 

  31. Khatri, I., Tomar, R., Ganesan, K., Prasad, G.S., and Subramanian, S., Sci. Rep., vol. 7, no. 1, pp. 371–385.

  32. Pais, P., Oliveira, J., Almeida, V., Yilmaz, M., Monteiro, P.T., and Teixeira, M.C., Genomics, 2021, vol. 113, pp. 530–539.

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez-Pacheco, P., Arévalo-Villena, M., Rosa, I.Z., and Briones, PerezA., Food Res. Int., 2018, vol. 112, pp. 143–151. https://doi.org/10.1016/j.foodres.2018.06.008

    Article  CAS  Google Scholar 

  34. Fernández-Pacheco, P., Arévalo-Villena, M., Bevilacqua, A., Corbo, M.R., and Briones, A., LWT ood Sci. Technol., 2018, vol. 97, pp. 332–340. https://doi.org/10.1016/j.lwt.2018.07.007

  35. Fernández-Pacheco, P., Ramos, MongeI.M., Fernández-González, M., Poveda, ColadoJ.M., and Arévalo-Villena, M., Front. Nutr., 2021, vol. 8. https://doi.org/10.3389/fnut.2021.659328

  36. Fernández-Pacheco, P., García-Béjar, B., Jimenez-del Castillo, M., Carreño-Domínguez, J., Briones Pérez, A., and Arévalo-Villena, M.J., Sci. Food Agric., 2021, vol. 101, no. 6, pp. 2201–2209. https://doi.org/10.1002/jsfa.10839

    Article  CAS  Google Scholar 

  37. Fernández-Pacheco, P., Rosa, I.Z., Arévalo-Villena, M., Gomes, E., and Pérez, A.B., Braz. J. Microbiol., 2021, vol. 52, no. 4, pp. 2129–2144. https://doi.org/10.1007/s42770-021-00541-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simões, L.A., Cristina de Souza, A., Ferreira, I., Melo, D.S., Lopes, L.A.A., Magnani, M., et al., J. Appl. Microbiol., 2021, vol. 131, no. 4, pp. 1983–1997. https://doi.org/10.1111/jam.15065

    Article  CAS  PubMed  Google Scholar 

  39. Reyes-Becerril, M., Alamillo, E., and Angulo, C., Probiotics Antimicrob. Proteins, 2021, vol. 13, no. 5, pp. 1292–1305. https://doi.org/10.1007/s12602-021-09769-5

    Article  CAS  PubMed  Google Scholar 

  40. Palla, M., Blandino, M., Grassi, A., Giordano, D., Sgherri, C., Quartacci, M.F., et al., Sci. Rep., vol. 10, p. 12856.

  41. Palla, M., Conte, G., Grassi, A., Esin, S., Serra, A., Mele, M., et al., Foods, 2021, vol. 10, no. 9, p. 2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okada, Y., Tsuzuki, Y., Sugihara, N., Nishii, S., Shibuya, N., Mizoguchi, A., et al., J. Gastroenterol., 2021, vol. 56, no. 9, pp. 829–842. https://doi.org/10.1007/s00535-021-01804-0

    Article  CAS  PubMed  Google Scholar 

  43. Chelliah, R., Kim, E.J., Daliri, E.B., Antony, U., and Oh, D.H., Foods, 2021, vol. 10, no. 6, p. 1428. https://doi.org/10.3390/foods10061428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pereira, R.P., Jadhav, R., Baghela, A., and Barretto, D.A., Probiotics Antimicrob. Proteins, 2021, vol. 13, no. 3, pp. 796–808. https://doi.org/10.1007/s12602-020-09734-8

    Article  CAS  PubMed  Google Scholar 

  45. Zahoor, F., Sooklim, C., Songdech, P., Duangpakdee, O., and Soontorngun, N.S., Metabolites, 2021, vol. 11, no. 5, p. 312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, S., Zhang, Y., Yin, P., Zhang, K., Liu, Y., Gao, Y., et al., J. Dairy Sci., 2021, vol. 104, no. 6, pp. 6559–6576. https://doi.org/10.3168/jds.2020-19845

    Article  CAS  PubMed  Google Scholar 

  47. Hsiung, R.T., Fang, W.T., LePage, B.A., Hsu, S.A., Hsu, C.H., and Chou, J.Y., Probiotics Antimicrob. Proteins, 2021, vol. 13, no. 1, pp. 113–124. https://doi.org/10.1007/s12602-020-09661-8

    Article  CAS  PubMed  Google Scholar 

  48. Nag, D., Goel, A., Padwad, Y., and Singh, D., Probiotics Antimicrob. Proteins, 2022, vol. 18. https://doi.org/10.1007/s12602-021-09874-5

  49. Youn, H.Y., Kim, D.H., Kim, H.J., Jang, Y.S., Song, K.Y., Bae, D., et al., Probiotics Antimicrob. Proteins, 2022. https://doi.org/10.1007/s12602-021-09872-7

  50. Parafati, L., Palmeri, R., Pitino, I., and Restuccia, C., Food Microbiol., 2022, vol. 103, p. 103950. https://doi.org/10.1016/j.fm.2021.103950

    Article  CAS  PubMed  Google Scholar 

  51. Czerucka, D. and Rampal, P., World J. Gastroenterol., 2019, vol. 25, no. 18, pp. 2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naumova, E.S., Sadykova, A.Zh., Mikhailova, Yu.V., and Naumov, G.I., Polymorphism of lactose genes in the dairy yeasts Kluyveromyces marxianus, potential probiotic microorganisms, Microbiology (Moscow), 2017, vol. 86, no. 3, pp. 363–369.

    Article  CAS  Google Scholar 

  53. Golubev, V.I., Mycocinotyping, Mikol. Fitopatol., 2012, vol. 46, no. 1, pp. 3–13.

    Google Scholar 

  54. Nascimento, B.L., Delabeneta, M.F., Rosseto, L.R.B., Junges, D.S.B., Paris, A.P., Persel, C., et al., FEMS Yeast Res., vol. 20, no. 3. https://doi.org/10.1093/femsyr/foaa016

  55. Roussel, C., De Paepe, K., Galia, W., de Bodt, J., Chalancon, S., Denis, S., et al., Gut Microbes, 2021, vol. 13, no. 1, p. 1953246. https://doi.org/10.1080/19490976.2021.1953246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gut, A.M., Vasiljevic, T., Yeager, T., and Donkor, O.N., Saudi J. Biol. Sci., 2022, vol. 29, no. 1, pp. 550–563. https://doi.org/10.1016/j.sjbs.2021.09.025

    Article  CAS  PubMed  Google Scholar 

  57. Ansari, F., Alian Samakkhah, S., Bahadori, A., Jafari, S.M., Ziaee, M., Khodayari, M.T., et al., Crit. Rev. Food Sci. Nutr., 2021, vol. 13, pp. 1–29. https://doi.org/10.1080/10408398.2021.1949577

    Article  CAS  Google Scholar 

  58. Swieca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., et al., LWT, 2019, vol. 100, pp. 220–226.

    Article  CAS  Google Scholar 

  59. Chan, M.Z.A., Toh, M., and Liu, S.Q., Int. J. Food Microbiol., 2021, vol. 4, pp. 350–109229. https://doi.org/10.1016/j.ijfoodmicro.2021.109229

    Article  CAS  Google Scholar 

  60. Polanowska, K., Varghese, R., Kuligowski, M., and Majcher, M., J. Sci. Food Agric., 2021, vol. 101, no. 13, pp. 5487–5497. https://doi.org/10.1002/jsfa.11197

    Article  CAS  PubMed  Google Scholar 

  61. Senkarcinova, B., Graça, Dias I.A., Nespor, J., and Branyik, T., LWT, 2019, vol. 100, pp. 362–367.

    Google Scholar 

  62. Sarwar, A., Tariq, A., Al-Dalali, S., Zhao, X., Zhang, J., Jalal ud Din, et al., Foods, 2019, vol. 8, p. 468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andrade, R.P., Oliveira, D.R., Alencar, Lopes, A.C., Abreu, L.R., and Duarte, W.F., Food Res. Int., 2019, vol. 125, no. 2019. https://doi.org/10.1016/j.foodres.2019.108620

  64. Poloni, V.L., Bainotti, M.B., Vergara, L.D., Escobar, F., Montenegro, M., and Cavaglieri, L., Curr. Res. Food Sci., 2021, vol. 4, pp. 132–140. https://doi.org/10.1016/j.crfs.2021.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ryabtseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabtseva, S.A., Khramtsov, A.G., Sazanova, S.N. et al. The Probiotic Properties of Saccharomycetes (Review). Appl Biochem Microbiol 59, 111–121 (2023). https://doi.org/10.1134/S0003683823010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823010088

Keywords:

Navigation