Skip to main content
Log in

Isolation and in vitro Screening of Plant Growth Promoting Rhizospheric Bacteria from Corn (Zea mays var. indentata)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Many farmers use organic fertilizers to preserve the environment, but unfortunately, it’s not as effective as chemical fertilizers. In recent years, the discovery of plant growth-promoting rhizobacteria (PGPR) has gained some attraction. PGPR have abilities to promote plant growth efficiently, including corn plants. Corn (Zea mays L.) is a staple food needed in large quantities. Our results show that some bacteria may have the potential to become PGPR for corn. Corn plant samples were obtained from maize plantations in Bunulrejo district, Blimbing, Malang (Republic of Indonesia). The potential of bacterial isolates obtained from the rhizosphere and endophyte area of corn as PGPR was determined based on several in vitro screening results, including the siderophore production test, indole-3-acetic acid (IAA) phytohormone production test, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production test, and phosphate dissolution test. Five isolates contained the best potential to become PGPR, namely E6.2, E3.1, E4.2, R4.2, and R2.1. Later, E6.2 and E3.1 were known to be able to fix nitrogen and produce siderophores, IAA and ACC deaminase. Based on the sequencing results, the R2.1 isolate was considered Bordetella muralis, the E3.1 isolate was identified as Cellulosimicrobium cellulans, while the R4.2, E4.2, and E6.2 isolates belonged to Serratia nematodiphila. These isolates could be used as potential inoculants for biofertilizers for better agricultural practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mantau, Z., J. Penelit. Dan Pengemb. Pertan., 2016, vol. 35, pp. 89–97. https://doi.org/10.21082/jp3.v35n2.2016.p89-97

    Article  Google Scholar 

  2. Corn, Serna-Saldivar, S.O., Ed., Elsevier, 2019.

  3. Nurdin, N., Maspeke, P., Ilahude, Z., and Zakaria, F., J. Trop. Soils, 2008, vol. 14, pp. 49–56.

    Article  Google Scholar 

  4. Gul, S., Khan, M.H., Khanday, B.A., and Nabi, S., Scientifica, 2015, vol. 2015, p. 198575. https://doi.org/10.1155/2015/198575

    Article  PubMed  PubMed Central  Google Scholar 

  5. Microbiota and Biofertilizers, Khalid, R.H., Gowhar, H.D., Mohammad, A.M., and Rouf A.B., Eds., Denmark: Springer Cham, 2021, vol. 2, pp. 1–20.

    Google Scholar 

  6. Chandini, C., Kumar, R., Kumar, R., and Prakash, O., Research Trends in Environmental Sciences, Sharma, P., Ed., India: AkiNik Publications, 2019, 2nd ed., pp. 69–86.

    Google Scholar 

  7. Santoyo, G., Urtis-Flores, C.A., Loeza-Lara, P.D., Orozco-Mosqueda, M. and Glick, B.R., Biology, 2021, vol. 10, no. 6, pp. 1–18. https://doi.org/10.3390/biology10060475

    Article  CAS  Google Scholar 

  8. Ahemad, M. and Kibret, M., J. King Saud. Univ., Sci., 2014, vol. 26, pp. 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  9. Yazdani, M., Bahmanyar, M.A., Pirdashti, H., and Esmaili, M.A., Int. J. Agric. Biosyst. Eng., 2009, vol. 3, pp. 50–52.

    Google Scholar 

  10. Iwuagwu, M., Chukwuka, K.S., Uka, U.N., and Amandianeze, M.C. Asian J. Microbiol. Biotechnol. Environ. Sci., 2013, vol. 15, pp. 235–240.

    CAS  Google Scholar 

  11. Afzal, I., Shinwari, Z.K., Sikandar, S., and Shahzad, S., Microbiol. Res., 2019, vol. 221, pp. 36–49.

    Article  CAS  PubMed  Google Scholar 

  12. Coombs, J.T. and Franco, C.M.M., Appl. Environ. Microbiol., 2003, vol. 69, pp. 5603–5608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kyaw, E.P., Soe, M.M., Yu, S.S., Latt, Z.K., and Lynn, T.M., J. Biotechnol. Bioresour., 2019, vol. 1, pp. 1–6.

    Google Scholar 

  14. Kim, W.K., Karabasil, N., Bulajic, S., Dunkley, K.D., Callaway, T.R., Poole, T.L., et al., J. Environ. Sci. Health B., 2005, vol. 40, pp. 475–484.

    Article  CAS  PubMed  Google Scholar 

  15. Sukweenadhi, J., Yeon-Ju, K., Kwang-Je, L., Sung-Cheol, K., Van-An, H., Ngoc-Lan, N., and Deok-Chun, Y., Antonie van Leeuwenhoek, 2014, vol. 106, pp. 935–945.

    CAS  PubMed  Google Scholar 

  16. Louden, B.C., Haarmann, D., and Lynne, A.M., J. Microbiol. Biol. Educ., 2011, vol. 12, pp. 51–53. https://doi.org/10.1128/jmbe.v12i1.249

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ozdal, M., Ozdal, O.G., Sezen, A., Algur, O.F., and Kurbanoglu, E.B., 3 Biotech, 2017, vol. 7, p.23. https://doi.org/10.1007/s13205-017-0605-0

  18. Gupta, S. and Pandey, S., Front. Microbiol., 2019, vol. 10, article 1506, pp. 1–17. https://doi.org/10.3389/fmicb.2019.01506

  19. Husen, E., Indones. J. Agric. Sci., 2016, vol. 4, pp. 27–31. https://doi.org/10.21082/ijas.v4n1.2003.p27-31

    Article  Google Scholar 

  20. Patten, C.L. and Glick, B.R., Appl. Environ. Microbiol., 2002, vol. 68, pp. 3795–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Penrose, D.M. and Glick, B.R., Physiol. Plant., 2003, vol. 118, pp. 10–15.

    Article  CAS  PubMed  Google Scholar 

  22. Vessey, J.K., Plant Soil, 2003, vol. 255, pp. 571–586.

    Article  CAS  Google Scholar 

  23. Rao, N.S.S., Soil Microorganisms and Plant Growth, New Delhi: Oxford and IBH Publishing Co., 1997.

    Google Scholar 

  24. Tempera, G., Bonfiglio, G., Cammarata, E., Corsello, S., and Cianci, A., Int. J. Antimicrob. Agents, 2004, vol. 24, pp. 85–88. https://doi.org/10.1016/j.ijantimicag.2003.12.013

    Article  CAS  PubMed  Google Scholar 

  25. Bliziotis, I.A., Ntziora, F., Lawrence, K.R., and Falagas, M.E., Eur. J. Clin. Microbiol. Infect. Dis., 2017, vol. 26, pp. 849–856. https://doi.org/10.1007/s10096-007-0378-1

    Article  CAS  Google Scholar 

  26. Zhang, C.X., Yang, S.Y., Xu, M.X., Sun, J., Liu, H., Liu, J.R., et al., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1603–1608. https://doi.org/10.1099/ijs.0.65718-0

    Article  CAS  PubMed  Google Scholar 

  27. Blair, J.M.A., Richmond G.E., Bailey A.M., Ivens, A., and Piddock, L.J.V., PLoS One, 2013, vol. 8, p. e63912. https://doi.org/10.1371/journal.pone.0063912

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khoa, N.Đ., Giàu, N.Đ.N., and Tuấn, T.Q., Biol. Control, 2016, vol. 103, pp. 1–10. https://doi.org/10.1016/j.biocontrol.2016.07.010

    Article  Google Scholar 

  29. Tazato, N., Handa, Y., Nishijima, M., Kigawa, R., Sano, C., and Sugiyama, J., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 4830–4838.

    Article  CAS  PubMed  Google Scholar 

  30. Yadav, A.N, Verma, P., Sachan, S.G, Kaushik, R., and Saxena A., Microorganisms for Green Revolution, Panpatte, D.G., Jhala, Y.K., Shelat, H.N., and Vyas, R.V., Eds., Singapore: Springer, 2018, pp 197–240.

    Google Scholar 

  31. Walia, A., Mehta, P., Chauhan, A., Kulshrestha, S., and Shirkot, C.K., World J. Microbiol. Biotechnol., 2014, vol. 30, pp. 2597–2608.

    Article  CAS  PubMed  Google Scholar 

  32. Samuel, L.P., Balada-Llasat, J.M., Harrington, A., and Cavagnolo, R., J. Clin. Microbiol., 2016, vol. 54, pp. 1442–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nabti, E., Bensidhoum, L., Tabli, N., Dahela, D., Weissb, A., Rothballerb, M., et al., Eur. J. Soil. Biol., 2014, vol. 61, pp. 20–26.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by a grant from the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sukweenadhi.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukweenadhi, J., Theda, J.A., Artadana, I.B. et al. Isolation and in vitro Screening of Plant Growth Promoting Rhizospheric Bacteria from Corn (Zea mays var. indentata). Appl Biochem Microbiol 58, 806–812 (2022). https://doi.org/10.1134/S000368382206014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382206014X

Keywords:

Navigation