Skip to main content
Log in

Dynamic Variation of Camel Gastrointestinal Bacterial Communities Contributing to Benzo(a)pyrene Degradation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Benzo(a)pyrene (BaP) is one of the most common organic pollutants in the environment, and its microbial removal has great ecological and economic value. Here, using BaP (50 mg/L) as the sole carbon source, dynamic changes in camel rumen and gut bacterial communities were analyzed by high-throughput sequencing. Next, cultivable BaP-degrading isolates were obtained, and their degradation characteristics were explored. The relative abundance of most bacteria in the gut and rumen underwent apparent changes after BaP treatment. The rumen and gut bacteria have the ability to degrade BaP but fluctuated during iterative culturing from the first to the fifth generation of gut communities displaying the highest BaP degradation efficiency (BDE) (74.4 and 81.1%, respectively). Moreover, 37 isolates exhibiting BDE were identified. Among these isolates, CL9 (Klebsiella sp.), CL16 (Ochrobactrum sp.), CC6 (Ochrobactrum sp.), and CC16 (Bacillus sp.) showed BDEs of up to 70.8, 69.3, 68.4, and 76.2%, respectively. The enzyme catechol-2,3-dioxygenase was involved in BaP degradation in these four BaP-degrading isolates and represented the main BaP degradation pathway in isolates CL9 and CL16; however, the relative expression level of the gene phnAc was higher in isolates CC6 and CC16 than in isolates CL9 and CL16. Our results provided promising bacterial resources for the removal of BaP and laid the foundation for the application of animal gastrointestinal bacteria to degrade environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Srogi, K., Environ. Chem. Lett., 2007, vol. 5, no. 4, pp. 169–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou, J.L. and Maskaoui, K., Environ. Pollut., 2003, vol. 121, no. 2, pp. 269–281.

    Article  CAS  PubMed  Google Scholar 

  3. Lin, Q., Wang, Z., Ma, S., and Chen, Y., Sci. Total Environ., 2006, vol. 368, no. 3, pp. 814–822.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips, D.H., Nature, 1983, vol. 303, pp. 468–472.

    Article  CAS  PubMed  Google Scholar 

  5. DeBofsky, A., Xie, Y., Grimard, C., Alcaraz, A.J., Brinkmann, M., Hecker, M., et al., Chemosphere, 2020, vol. 252, p. 126461.

    Article  CAS  PubMed  Google Scholar 

  6. Carlson, E.A., Li, Y., and Zelikoff, J.T., Mar. Environ. Res., 2004, vol. 58, no. 2, pp. 731–734.

    Article  CAS  PubMed  Google Scholar 

  7. Beyer, J., Jonsson, G., Porte, C., Krahn, M. M., and Ariese, F., Environ. Toxicol. Pharmacol., 2010, vol. 30, no. 3, pp. 224–244.

    Article  CAS  PubMed  Google Scholar 

  8. Medina-Bellver, J.I., Marin, P., Delgado, A., Rodríguez-Sánchez, A., Reyes, E., Ramos, J.L., et al., Environ. Microbiol., 2005, vol. 7, no. 6, pp. 773–779.

    Article  CAS  PubMed  Google Scholar 

  9. Das, N. and Chandran, P., Biotechnol. Res. Int., 2011, vol. 2011, p. 941810.

    PubMed  Google Scholar 

  10. Díaz, E., Jiménez, J.I., and Nogales, J., Curr. Opin. Biotechnol., 2013, vol. 24, no. 3, pp. 431–442.

    Article  PubMed  Google Scholar 

  11. Juhasz, A.L. and Naidu, R., Int. Biodeter. Biodegrad., 2000, vol. 45, no. 1–2, pp. 57–88.

    Article  CAS  Google Scholar 

  12. Sowada, J., Schmalenberger, A., Ebner, I., Luch, A., and Tralau, T., FEMS Microbiol. Ecol., 2014, vol. 88, no. 1, pp. 129–139.

    Article  CAS  PubMed  Google Scholar 

  13. Van de, W. T., Vanhaecke, L., Boeckaert, C. Peru, K., Headley, J., Verstraete, W., et al., Environ. Health Perspect., 2005, vol. 113, no. 1, pp. 6–10.

    Article  Google Scholar 

  14. Kronberg, S.L., Halaweish, F.T., Hubert, M.B., and Weimer, P. J., J. Chem. Ecol., 2006, vol. 32, no. 1, pp. 15–28.

    Article  CAS  PubMed  Google Scholar 

  15. Goel, G., Puniya, A.K., and Singh, K., J. Basic Microbiol., 2005, vol. 45, no. 3, pp. 243–245.

    Article  CAS  PubMed  Google Scholar 

  16. Kaczensky, P., Adiya, Y., von Wehrden, H., Mijiddorj, B., Walzer, C., Denise Güthlin, D., et al., Biol. Conserv., 2014, vol. 169, pp. 311–318.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al., ISME J., 2012, vol. 6, no. 8, pp. 1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi, G.F., Ma, G.Q., Chen, S., Lin, C.C., and Zhao, X.Y., Appl. Environ. Microbiol., 2019, vol. 85, no. 13, pp. 00162-19.

    Google Scholar 

  19. Livak, K.J. and Schmittgen, T.D., Methods (Orlando), 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  20. Bhatt, V.D., Dande, S.S., Patil N.V., and Joshi, C. G., Mol. Biol. Rep., 2013, vol. 40, no. 4, pp. 3363–3371.

    Article  CAS  PubMed  Google Scholar 

  21. Govindaswami, M., Feldhake, D.J., Kinkle, B.K., Mindekk, D. P., and Loper, J.C., Appl. Environ. Microbiol., 1995, vol. 61, pp. 3221–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harayama, S., Curr. Opin. Biotechnol., 1997, vol. 8, pp. 268–273.

    Article  CAS  PubMed  Google Scholar 

  23. Ye, D., Siddiqi, M.A., Maccubbin, A.E., Kumar, S., and Sikka, H.C., Environ. Sci. Technol., 1995, vol. 30, no. 1, pp. 136–142.

    Article  Google Scholar 

  24. Ortega-González, D.K., Cristiani-Urbina, E., Flores-Ortíz, C.M., Cruz-Maya, J.A., Cancino-Díaz, J.C., and Jan-Roblero, J., Appl. Biochem. Biotechnol., 2014, vol. 175, no. 2, pp. 1123–1138.

    Article  PubMed  Google Scholar 

  25. Khalil, M., Lerat, S., Beaudoin N., and Beaulieu, C., Front. Microbiol., 2019, vol. 10, p. 02795.

    Article  Google Scholar 

  26. Chua, C.H., Feng, Y., Yeo, C.C., Khoo, H.E., and Poh, C.L., FEMS Microbiol. Lett., 2001, vol. 204, no. 1, pp. 141–146.

    Article  CAS  PubMed  Google Scholar 

  27. Meena, S.S., Sharma, R.S., Gupta, P., Kamakar, S., and Aggarwaal, K.K., J. Basic Microbiol., 2016, vol. 56, no. 4, pp. 369–378.

    Article  CAS  PubMed  Google Scholar 

  28. Lidija, O., Tanja, N., Jasmina, N.R., Sanja, B., and Branka, V., Arch. Biol. Sci., 2011, vol. 63, no. 4, pp. 1057–1067.

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (no. 31160028) and the scientific research fund of Sichuan Provincial Science and Technology Department (2018JY0266).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Jiang or X. C. Zeng.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

AVAILABILITY OF DATA AND MATERIAL

The datasets generated for this study can be found in the GenBank repository under accession numbers PRJNA656734 and KT316387– KT316423.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Jiang, Y., Fei, Y.Y. et al. Dynamic Variation of Camel Gastrointestinal Bacterial Communities Contributing to Benzo(a)pyrene Degradation. Appl Biochem Microbiol 58, 796–805 (2022). https://doi.org/10.1134/S0003683822060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822060060

Keywords:

Navigation