Skip to main content
Log in

Bacterial Cellulose as a Matrix for Microorganisms in Bioelectrocatalytic Systems

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) produced by the Komagateibacter sucrofermentas VKPM B-11267 bacteria was used as a carrier for immobilization of acetic acid bacteria Gluconobacter oxydans in amperometric biosensors. The bioreceptor was formed on the surface of a screen-printed graphite electrode modified with thermally expanded graphite (TEG) or on the surface of a porous three-dimensional material, nickel foam (NF). Structural features of these materials contributed to the creation of a firm contact between the electrode material and the surface of the BC on which the bacterial cells were immobilized. Scanning electron microscopy showed that bacteria not only sorb on the surface of BC but are also able to penetrate the inner volume of the film. Conductivity of both types of biosensors was studied using impedance spectroscopy and the resistance of the graphite electrode was shown to decrease by three orders of magnitude after its surface is modified with TEG. Bioelectrodes containing BC were used in the construction of an amperometric biosensor for glucose determination. The sensitivity of the biosensor was 3 μA/mM × cm2. Thus, BC in combination with TEG and NF can be used to create three-dimensional electrodes of bioelectrocatalytical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Lobsiger, N. and Stark, W.J., Anal. Sci., 2019, vol. 35, no. 8, pp. 839–847. https://doi.org/10.2116/analsci.19R004

    Article  PubMed  Google Scholar 

  2. Andriukonis, E., Celiesiute-Germaniene, R., Ramanavicius, S., Viter, R., and Ramanavicius, A., Sensors, 2021, vol. 21, no. 7, p. 2442. https://doi.org/10.3390/s21072442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lakard, B., Appl. Sci., 2020, vol. 10, p. 6614. https://doi.org/10.3390/app10186614

    Article  CAS  Google Scholar 

  4. Liu, C., Xu, Y., Han, X., and Chang, X., Environ. Toxicol. Chem., 2017, vol. 37, no. 2, pp. 329–335. https://doi.org/10.1002/etc.3959

    Article  CAS  PubMed  Google Scholar 

  5. Chen, J.Y., Xie, P., and Zhang, Z.P., Chem. Eng. J., 2019, vol. 361, p. 615. https://doi.org/10.1016/j.cej.2018.12.116

    Article  CAS  Google Scholar 

  6. Piao, M., Zou, D., Yang, Y., Ren, X., Qin, C., and Piao, Y., Materials, 2019, vol. 12, p. 704. https://doi.org/10.3390/ma12050704

    Article  CAS  PubMed Central  Google Scholar 

  7. Truong, D.H., Dam, M.S., Bujna, E., Rezessy-Szabo, J., Farkas, C., Vi, V.N.H., Csernus, O., Nguyen, V.D., Gathergood, N., Friedrich, L., Hafidi, M., Gupta, V.K., and Nguyen, Q.D., Fuel, 2021, vol. 285, article ID 119259. https://doi.org/10.1016/j.fuel.2020.119259

    Article  CAS  Google Scholar 

  8. Meyer, J., Meyer, L.-E., and Kara, S., Eng. Life. Sci., 2021, pp. 1–13. https://doi.org/10.1002/elsc.202100087

  9. Gao, H., Khera, E., Lee, J.K., and Wen, F., J. Vis. Exp., 2016, vol. 110, p. 53944. https://doi.org/10.3791/53944

    Article  CAS  Google Scholar 

  10. Chakraborty, S., J. Carbohydr. Chem., 2017, vol. 36, no. 1, pp. 1–19. https://doi.org/10.1080/07328303.2017.1347668

    Article  CAS  Google Scholar 

  11. Plekhanova, Y., Tarasov, S., Bykov, A., Prisyazhnaya, N., Kolesov, V., Sigaev, V., Signore, M.A., and Reshetilov, A., Biosensors, 2019, vol. 9, p. 137. https://doi.org/10.3390/bios9040137

    Article  CAS  PubMed Central  Google Scholar 

  12. Kalita, T., Sangma, S., Bez, G., and Ambasht, P., J. Sci. Res., 2020, vol. 64, pp. 192–200. https://doi.org/10.37398/JSR.2020.640227

    Article  Google Scholar 

  13. Sattar, H., Aman, A., and Qader, S.A.U., Int. J. Biol. Macromol., 2018, vol. 111, pp. 917–922. https://doi.org/10.1016/j.ijbiomac.2018.01.105

    Article  CAS  PubMed  Google Scholar 

  14. Żywicka, A., Wenelska, K., Junka, A., Chodaczek, G., Szymczyk, P., and Fijałkowski, K., World J. Microbiol. Biotechnol., 2019, vol. 35, no. 1, p. 11. https://doi.org/10.1007/s11274-018-2584-7

    Article  CAS  PubMed  Google Scholar 

  15. Bezerra, C.S., de Farias, LemosC.M.G., de Sousa, M., and Gonçalves, L.R.B.J., Appl. Polym. Sci., 2015, vol. 132, no. 26. https://doi.org/10.1002/app.42125

  16. Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., and Mohamad, R., Nanomaterials, 2017, vol. 7, no. 9, p. 257. https://doi.org/10.3390/nano7090257

    Article  CAS  PubMed Central  Google Scholar 

  17. Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., and Shchankin, M., Braz. J. Microbiol., 2018, vol. 49, pp. 151–159. https://doi.org/10.1016/j.bjm.2017.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohite, B.V. and Patil, S.V., Biotechnol. Appl. Biochem., 2014, vol. 61, no. 2, pp. 101–110. https://doi.org/10.1002/bab.1148

    Article  CAS  PubMed  Google Scholar 

  19. Kiesewetter, D.V., Zhuravleva, N.M., Reznik, A.S., Khripunov, A.K., and Migunova, A.V., in 2020 IEEE 3rd Int. Conf. Dielectrics (ICD), 2020, pp. 245–248. https://doi.org/10.1109/ICD46958.2020.9341885

  20. Wang, W., Zhang, T.-J., Zhang, D.-W., Li, H.-Y., Ma, Y.-R.Qi., Zhou, Y.-L., and Zhang, X.-X., Talanta, 2011, vol. 84, no. 1, pp. 71–77. https://doi.org/10.1016/j.talanta.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  21. Li, G., Sun, K., Li, D., Lv, P., Wang, Q., Huang, F., and Wei, Q., Colloids Surf. A Physicochem., 2016, vol. 509, pp. 408–414. https://doi.org/10.1016/j.colsurfa.2016.09.028

  22. Jasim, A., Ullah, M.W., Shi, Z., Lin, X., and Yang, G., Carbohydr. Res., 2017, vol. 163, pp. 62–69. https://doi.org/10.1016/j.carbpol.2017.01.056

    Article  CAS  Google Scholar 

  23. Mahapatra, S., Srivastava, V.R., and Chandra, P., Biosensors, 2021, vol. 11, no. 6, p. 168. https://doi.org/10.3390/bios11060168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., and Radeck, I., Polymers, 2021, vol. 13, no. 3, p. 412. https://doi.org/10.3390/polym13030412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dourado, F., Gama, M., and Rodrigues, A.C., Toxicol. Rep., vol. 4, pp. 543–553. https://doi.org/10.1016/j.toxrep.2017.09.005

  26. Poddar, M.K. and Dikshit, P.K., Nano Select., 2021, vol. 2, no. 9, pp. 1605–1628. https://doi.org/10.1002/nano.202100044

    Article  CAS  Google Scholar 

  27. Hui, Y., Ma, X., Qu, F., Chen, F., and Chen, Y., J. Electrochem. Soc., 2017, vol. 164, no. 13, pp. 112–120. https://doi.org/10.1149/2.0761713jes

    Article  CAS  Google Scholar 

  28. Plekhanova, Y., Tarasov, S., Kitova, A., Kolesov, V., Kashin, V., Sundramoorthy, A.K., and Reshetilov, A., 3 Biotech, 2022, vol. 12, p. 42. https://doi.org/10.1007/s13205-021-03107-w

  29. Reshetilov, A.N., Plekhanova, Y.V., Tarasov, S.E., Arlyapov, V.A., Kolesov, V.V., Gutorov, M.A., Gotovtsev, P.M., and Vasilov, R.G., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 123–129. https://doi.org/10.1134/s0003683817010161

    Article  CAS  Google Scholar 

  30. Revin, V.V., Klenova, N.A., Red’kin, N.A., Belousova, Z.P., Tukmakov, K.N., Markova, Yu.A., and Sosova, E.Yu., Izv. VUZov. Prikl. Khim. Biotekhnol., 2017, vol. 7, no. 1, pp. 102–110. https://doi.org/10.21285/2227-2925-2017-7-1-102-110

    Article  Google Scholar 

  31. Plekhanova, Yu.V, Tarasov, S.E., Bykov, A.G., Prisyazhnaya, N.V., Tenchurin, T.Kh., Chvalun, S.N., Orekhov, A.C., Shepelev, A.D., Gotovtsev, P.M., and Reshetilov, A.N., Ross. Nanotekhnol., 2018, vol. 13, nos. 9–10, pp. 77–84. https://doi.org/10.1134/S1992722318050114

    Article  Google Scholar 

  32. Pogorelova, N.A., Chernigova, S.V., and Rogachev, E.A., Vestn. Omsk. Gos. Agrar. Univ., 2019, vol. 4, no. 36, pp. 131–141.

  33. Zhang, H.Y., Yan, X.J., Jiang, Y., and Cong, J., Adv. Mater. Res., 2010, vols. 152–153, pp. 978–987. https://doi.org/10.4028/www.scientific.net/amr.152-153.978

    Article  Google Scholar 

  34. Rebelo, A.R., Archer, A.J., Chen, X., Liu, C., Yang, G., and Liu, Y., Sci. Technol. Adv. Mater., 2018, vol. 19, no. 1, pp. 203–211. https://doi.org/10.1080/14686996.2018.1430981

    Article  CAS  Google Scholar 

  35. Nangia, S., Warkar, S., and Katyal, D., J. Macromol. Sci., A, 2019, pp. 1–17. https://doi.org/10.1080/10601325.2018.1526041

  36. Kubota, M., Matsui, M., Chiku, H., Kasashima, N., Shimijoh, M., and Sakaguchi, K., Appl. Environ. Microbiol., 2005, vol. 71, no. 12, pp. 8805–8902. https://doi.org/10.1080/10601325.2018.1526041

    Article  CAS  Google Scholar 

  37. Zhao, J., Yan, P., Snow, B., Santos, R.M., and Chiang, Y.W., Process. Saf. Environ. Prot., 2020, vol. 142, pp. 191–202. https://doi.org/10.1016/j.psep.2020.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Torres, F., Commeaux, S., and Troncoso, HerosO., J. Funct. Biomater., 2012, vol. 3, pp. 864–878. https://doi.org/10.3390/jfb3040864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X., Lv, P., Yao, Y., Feng, Q., Mensah, A., Li, D., and Wei, Q., Chem. Eng. J., 2019, article ID 122316. https://doi.org/10.1016/j.cej.2019.122316

  40. Mashkour, M., Rahimnejad, M., Mashkour, M., and Soavi, F., J. Power Sources, 2020, vol. 478, article ID 228822. https://doi.org/10.1016/j.jpowsour.2020.228822

    Article  CAS  Google Scholar 

  41. Eynaki, H., Ali, KianiM., and Golmohammadi, H., Nanoscale, 2020, vol. 12, pp. 18409–18417. https://doi.org/10.1039/D0NR03505J

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out within a government task of the Ministry of Education and Science of the Russian Federation no. FEWG-2020-008 and government task of Kotelnikov Institute of Radioengineering and Electronics of RAS no. FFWZ-2022-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Reshetilov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, S.E., Plekhanova, Y.V., Kitova, A.E. et al. Bacterial Cellulose as a Matrix for Microorganisms in Bioelectrocatalytic Systems. Appl Biochem Microbiol 58, 468–477 (2022). https://doi.org/10.1134/S0003683822040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822040159

Keywords:

Navigation