Skip to main content
Log in

Nitric Oxide in Fungal Metabolism (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The review summarizes the latest data on the identification and synthesis of nitric oxide in fungi, as well as the mechanisms of NO action in these organisms, including S-nitrosylation and the nitration of amino acid residues, the initiation of DNA breaks, transcriptional gene activation, and the cGMP-dependent signaling pathway. Particular attention is paid to the NO-dependent regulation of such processes as apoptosis and various stress responses, spore germination, mycelium growth, and fungal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 24, pp. 9265–9269.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsoukias, M., Microcirculation, 2008, vol. 15, no. 8, pp. 813–834.

    CAS  PubMed  Google Scholar 

  3. Verma, N., Tiwari, S., Singh, V.P., and Prasad, S.M., Plant Growth Regul., 2020, vol. 90, no. 1, pp. 1–13.

    CAS  Google Scholar 

  4. Filippovich, S.Yu., Biokhimiya, 2010, vol. 75, no. 10, pp. 1367–1376.

    Google Scholar 

  5. Williams, D.E. and Boon, E.M., J. Innate Immun., 2019, vol. 11, no. 3, pp. 205–215.

    CAS  PubMed  Google Scholar 

  6. Cánovas, D., Marcos, J.F., Ana, T., Marcos, A.T., and Strauss, J., Curr. Genet., 2016, vol. 62, no. 3, pp. 513–518.

    PubMed  PubMed Central  Google Scholar 

  7. Arasimowicz-Jelonek, M. and Floryszak-Wieczorek, J., Front. Plant Sci., 2016, vol. 4, p. 252.

    Google Scholar 

  8. Zhao, Y., Lim, J., Xu, J., Yu, J-H., and Zheng, W., Mol. Microbiol., 2020, vol. 113, no. 5, pp. 872–882.

    CAS  PubMed  Google Scholar 

  9. Castello, P.R., David, P.S., McClure, T., Crook, Z., and Poyton, R.O., Cell Metab., 2006, vol. 87, no. 4, pp. 277–287.

    Google Scholar 

  10. Almeida, B., Buttner, S., Ohlmeier, S., Silva, A., Mesquita, A., Sampaio-Marques, B., et al., J. Cell Sci., 2007, vol. 120, no. 18, pp. 3279–3288.

    CAS  PubMed  Google Scholar 

  11. Wang, J. and Higgins, V.J., Fungal Genet. Biol., 2005, vol. 42, no. 4, pp. 284–292.

    CAS  PubMed  Google Scholar 

  12. Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., and Peng, Y., Fungal Genet. Biol., 2007, vol. 44, no. 12, pp. 1368–1379.

    CAS  PubMed  Google Scholar 

  13. Vieira, A.L., Linares, E., Augusto, O., and Gomes, S.L., Fungal Genet. Biol., 2009, vol. 46, no. 8, pp. 575–584.

    CAS  PubMed  Google Scholar 

  14. Kong, W.W., Huang, C.Y., Chen, Q., Zou, Y.J., and Zhang, J.X., Fungal Genet. Biol., 2012, vol. 49, no. 1, pp. 15–20.

    CAS  PubMed  Google Scholar 

  15. Carmona, L., Gandía, M., López-García, B., and Marcos, J.F., Biochem. Biophys. Res. Commun., 2012, vol. 417, no. 1, pp. 56–61.

    CAS  PubMed  Google Scholar 

  16. Pengkit, A., Jeon, S.S., Son, S.J., Shin, J.H., Baik, K.Y., Choi, E.H., and Park, G., Sci. Rep., 2016, vol. 6, article no. 30037. https://doi.org/10.1038/srep30037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samalova, M., Johnson, J., Illes, M., Kelly, S., Fricker, M., and Gurr, S., New Phytol., 2013, vol. 197, pp. 207–222.

    CAS  PubMed  Google Scholar 

  18. Kojima, H., Urano, Y., Kikuchi, K., Higuchi, T., Hirata, Y., and Nagano, T., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, no. 21, pp. 3209– 3212.

    CAS  Google Scholar 

  19. Maier, J., Hecker, R., Rockel, P., and Ninnemann, H., Plant Physiol., 2001, vol. 126, no. 3, pp. 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, N.K., Jeong, C.S., and Choi, I.S., Mycologia, 2000, vol. 92, no. 6, pp. 1027–1032.

    CAS  Google Scholar 

  21. Li, B., Fu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2830–2836.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiuchetta, S.J.R. and Castro-Prado, M.A.A., Genet. Mol. Biol., 2005, vol. 28, no. 4, pp. 798–803.

    CAS  Google Scholar 

  23. Wilken, M. and Huchzermeyer, B., Eur. J. Cell Biol., 1999, vol. 78, no. 3, pp. 209–213.

    CAS  PubMed  Google Scholar 

  24. Ninnemann, H. and Maier, J., Photochem. Photobiol., 1996, vol. 64, no. 2, pp. 393–398.

    CAS  PubMed  Google Scholar 

  25. Abaitua, F., Rementeria, A., Millan, R.S., Eguzkiza, A., Rodriguez, J.A., Ponton, J., and Sevilla, M.S., Microbiology, 1999, vol. 145, no. 7, pp. 1641–1647.

    CAS  PubMed  Google Scholar 

  26. Lai, T., Li, B., Qin, G., and Tian, S., Curr. Microbiol., 2011, vol. 62, no. 1, pp. 229–234.

    CAS  PubMed  Google Scholar 

  27. Kunert, J., Folia Microbiol., 1995, vol. 40, no. 3, pp. 238–244.

    CAS  Google Scholar 

  28. Lushchak, O.V. and Lushchak, V.I., Redox Rep., 2008, vol. 13, no. 6, pp. 283–291.

    CAS  PubMed  Google Scholar 

  29. Filippovich, S.Yu., Onufriev, M.V., Bachurina, G.P., and Kritskii, M.S., Appl. Biochem. Microbiol., 2019, vol. 55, no. 4, pp. 403–409.

    Google Scholar 

  30. Turrion-Gomez, J.L., Eslava, A.P., and Benito, E.P., Fungal Genet. Biol., 2010, vol. 47, no. 5, pp. 484–496.

    CAS  PubMed  Google Scholar 

  31. Rőszer, T., The Biology of Subcellular Nitric Oxide, New York, N.Y.: Springer and Business Media, 2012.

    Google Scholar 

  32. Baidya, S., Cary, J.W., Grayburn, W.S., and Calvo, A.M., Appl. Environ. Microbiol., 2011, vol. 77, no. 15, pp. 5524–5528.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nanomycotoxicology, Treating Mycotoxins in the Nano Way, Rai, M. and Abd-Elsalam, K.A., Eds., New York: Academic, 2020, pp. 481–501.

  34. Hetrick, E.M., Shin, J.H., Paul, H.S., and Schoenfisch, M.H., Biomaterials, 2009, vol. 30, no. 14, pp. 2782–2789.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Filippovich, S.Yu., Onufriev, M.V., Peregud D.I., Bachurina, G.P., and Kritskii, M. S., Appl. Biochem. Microbiol., 2020, vol. 56, no. 4, pp. 358–365.

    Google Scholar 

  36. Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., and Jiang, H., Microbiology, 2009, vol. 155, no. 10, pp. 3440–3448.

    CAS  PubMed  Google Scholar 

  37. Yu, Y., Yang, Z., Guo, K., Li, Z., Zhou, H., Wei, Y., et al., Curr. Microbiol., 2015, vol. 70, no. 4, pp. 618–622.

    CAS  PubMed  Google Scholar 

  38. Liu, W.C., Yuan, H.M., and Li, Y.H.Lu., FEMS Yeast Res., 2015, vol. 15. fov051. https://doi.org/10.1093/femsyr/fov051

    Article  CAS  PubMed  Google Scholar 

  39. Domitrovic, T., Palhano, F.L., Barja-Fidalgo, C., DeFreitas, M., Orlando, M.T., and Fernandes, P.M., FEMS Yeast Res., 2003, vol. 3, no. 4, pp. 341–346.

    CAS  PubMed  Google Scholar 

  40. Castello, P.R., Woo, D.K., Ball, K., Wojcik, J., Liu, L., and Poyton, R.O., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 24, pp. 8203–8208.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishimura, A., Kawahara, N., and Takagi, H., Biochem. Biophys. Res. Commun., 2013, vol. 430, no. 1, pp. 137–143.

    CAS  PubMed  Google Scholar 

  42. Chen, C., Li, Q., Wang, Q., Lu, D., Zhang, H., Wang, J., and Fu, R., Sci. Rep., vol. 7, p. 2017.

  43. Chiang, K.T., Shinyashiki, M., Switzer, C.H., Valentine, J.S., Gralla, E.B., Thiele, D.J., and Fukuto, J.M., Arch. Biochem. Biophys., 2000, vol. 377, no. 2, pp. 296–303.

    CAS  PubMed  Google Scholar 

  44. Li, Q., Huang, W., Xiong, C., and Zhao, J., Chemosphere, 2018, vol. 201, no. 6, pp. 294–302.

    CAS  PubMed  Google Scholar 

  45. Guo, S., Yao, Y., Zuo, L., Shi, W., Gao, N., and Xu, H., J. Basic Microbiol., 2016, vol. 56, no. 1, pp. 36–43.

    CAS  PubMed  Google Scholar 

  46. Lazar, E.E., Wills, R.B., Ho, B.T., Harris, A.M., and Spohr, L.J., Lett. Appl. Microbiol., 2008, vol. 46, no. 6, pp. 688–692.

    CAS  PubMed  Google Scholar 

  47. Yin, S., Gao, Z., Wang, C., Huang, L., Kang, Z., and Zhang, H., Front. Microbiol., 2016, vol. 7, p. 178.

    PubMed  PubMed Central  Google Scholar 

  48. Huang, H., Huang, M., Lv, W., Hu, Y., Wang, R., Zheng, X., et al., Front. Pharmacol., 2019, vol. 10, p. 1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y., Shi, H., Liang, S., Ning, G., Xu, N., Lu, J., et al., Microbial Res., 2015, vol. 180, pp. 11–22.

    CAS  Google Scholar 

  50. Do, Y.J., Kim, D.H., Jo, M.S., Kang, D.G., Lee, S.W., Kim, J.-W., and Hong, J.K., Korean J. Mycol., 2019, vol. 47, no. 3, pp. 219–232.

    Google Scholar 

  51. Marcos, A.T., Ramos, M.S., Marcos, J.F., Carmona, L., Strauss, J., and Canovas, D., Mol. Microbiol., 2016, vol. 99, no. 1, pp. 15–33.

    CAS  PubMed  Google Scholar 

  52. Filippovich, S.Yu., Bachurina, G.P., and Kritskii, M.S., Appl. Biochem. Microbiol., 2007, vol. 43, no. 3, pp. 331–337.

    Google Scholar 

  53. Marcos, A.T., Ramos, M.S., Schinko, T., Strauss, J., and Canovas, D., Fungal Genet. Biol., 2020, vol. 137, article 10337. https://doi.org/10.1016/j.fgb.2020.103337

    Article  Google Scholar 

  54. Alderton, W.K., Cooper, C.E., and Knowles, R.G., Biochem. J., 2001, vol. 357, no. 3, pp. 593–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hevel, J.M., White, K.A., and Marletta, M.A., J. Biol. Chem., 1991, vol. 266, no. 34, pp. 22789–22791.

    CAS  PubMed  Google Scholar 

  56. Kuo, W.N., Jn-Baptiste, J.B., Kanadia, R.N., McNabb, L.D., Zhai, L., Weeks, K., et al., Cytobios, 1996, vol. 87, pp. 251–263.

    CAS  PubMed  Google Scholar 

  57. Kanadia, R.N., Kuo, W.N., Mcnabb, M., and Botchway, A., Biochem. Mol. Biol. Int., 1998, vol. 45, no. 6, pp. 1081–1087.

    CAS  PubMed  Google Scholar 

  58. Zhao, Y., Xi, Q., Xu, Q., He, M., Ding, J., Dai, Y., et al., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 10, pp. 4361–4372.

    CAS  PubMed  Google Scholar 

  59. Sarkar, T.S., Biswas, P., Ghosh, S.K., and Ghosh, S., PLoS One, 2014, vol. 9. e107348. https://doi.org/10.1371/journal.pone.0107348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J., and Takagi, H., Microb. Cell Fact., 2012, vol. 11, pp. 11–40.

    Google Scholar 

  61. Astuti, R.I., Nasuno, R., and Takagi, H., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 22, pp. 9483–9497.

    CAS  PubMed  Google Scholar 

  62. Netz, D.J., Stümpfig, M., Doré, C., Muhlenhoff, U., Pierik, A.J., and Lill, R., Nat. Chem. Biol., 2010, vol. 6, no. 10, pp. 758–765.

    CAS  PubMed  Google Scholar 

  63. Corpas, F.G. and Barroso, J.B., Nitric Oxide, 2017, vol. 68, pp. 5–6.

    CAS  PubMed  Google Scholar 

  64. Gupta, K.J., Fernie, A.R., Kaiser, W.M., and van Dongen, J.T., Trends Plant Sci., 2011, vol. 16, no. 3, pp. 160–168.

    CAS  PubMed  Google Scholar 

  65. Baudouin, E., Plant Biol., 2011, vol. 13, no. 2, pp. 233–242.

    CAS  PubMed  Google Scholar 

  66. Zweier, J.L., Samouilov, A., and Kuppusamy, P., Biochim. Biophys. Acta, 1999, vol. 1411, nos. 2–3, pp. 250–262.

    CAS  PubMed  Google Scholar 

  67. Kröncke, K.D., Fehsel, K., Schmidt, T., Zenke, F.T., Dasting, I., Wesener, J.R., et al., Biochem. Biophys. Res. Commun., 1994, vol. 200, pp. 1105–1110.

    PubMed  Google Scholar 

  68. Nasuno, R., Aitoku, M., Manago, Y., Nishimura, A., Sasano, Y., Takagi, H., PLoS One, 2014, vol. 9. e113788. https://doi.org/10.1371/journal.pone.0113788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shinyashiki, M., Chiang, K., Switzer, C., Gralla, E., Valentine, J., Thiele, D.J., et al., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 6, pp. 2491–2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gunaydin, H. and Houk, K.N., Chem. Res. Toxicol., 2009, vol. 22, pp. 894–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Radi, R., Acc. Chem. Res., 2013, vol. 46, no. 2, pp. 550–559.

    CAS  PubMed  Google Scholar 

  72. Bhattacharjee, A., Majumdar, U., Maity, D., Sarkar, T.S., Goswami, A.M., Sahoo, R., and Ghosh, S., Biochem. Biophys. Res. Commun., 2009, vol. 388, no. 3, pp. 612–617.

    CAS  PubMed  Google Scholar 

  73. Kang, J.W., Lee, N.Y., Cho, K.C., Lee, M.Y., Choi, D.Y., Park, S.H., and Kim, K.P., Proteomics, 2015, vol. 15, nos. 2–3, pp. 580–590.

    CAS  PubMed  Google Scholar 

  74. Lai, T., Chen, Y., Li, B., Qin, G., and Tian, S., J. Proteom., 2014, vol. 103, pp. 47–56.

    CAS  Google Scholar 

  75. Friebe, A. and Koesling, D., Circ. Res., 2003, vol. 93, no. 2, pp. 96–105.

    CAS  PubMed  Google Scholar 

  76. Kig, C. and Temizkan, G., Protoplasma, 2009, vol. 238, nos 1-4, pp. 59–66.

    CAS  PubMed  Google Scholar 

  77. Schinko, T., Berger, H., Lee, W., Gallmetzer, A., Pirker, K., Pachlinger, R., et al., Mol. Microbiol., 2010, vol. 78, no. 3, pp. 720–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tillmann, A., Gow, N.A.R., and Brown, A.J.P., Biochem. Soc. Trans., 2011, vol. 39, pp. 219–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, S., Narukami, T., Masuo, S., Shimizu, M., Fujita, T., Doi, Y., et al., Nat. Chem. Biol., 2013, vol. 9, no. 1, pp. 657–663.

    CAS  PubMed  Google Scholar 

  80. Shumaev, K.B., Kosmachevskaya, O.V., Chumikina, L.V., and Topunov, A.F., Nat. Prod. Commun., 2016, vol. 11, pp. 1189–1192.

    PubMed  Google Scholar 

  81. Zhao, Y., He, M., Ding, J., Xi, Q., Loake, G.J., and Zheng, W., Sci. Rep., vol. 6. article 37601. https://doi.org/10.1038/srep37601

  82. Morozkina, E.V. and Kurakov, A.V., Appl. Biochem. Microbiol., 2007, vol. 43, no. 5, pp. 607–613.

    CAS  Google Scholar 

  83. Takaya, N., J. Biosci. Bioeng., 2002, vol. 94, no. 6, pp. 506–510.

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was performed according to the State assignment 0104-2019-0024 for a Federal State Institution, the Fundamentals of Biotechnology Federal Research Center, of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Filippovich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippovich, S.Y., Bachurina, G.P. Nitric Oxide in Fungal Metabolism (Review). Appl Biochem Microbiol 57, 694–705 (2021). https://doi.org/10.1134/S000368382106003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382106003X

Keywords:

Navigation