Skip to main content
Log in

Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Today’s shortage of effective antimicrobial agents can be overcome by using antimicrobial peptides, which are produced naturally by a wide range of organisms, including microorganisms, plants, and mammals. Among these chemical groups, peptaibols are the well-known compounds with various biological activities, including antibacterial, antifungal, anticancer, antimycoplasmic, antitrypanosomal, and others. In this review, we summarize today’s knowledge on the sources, direct surface applications, and the mode of action of the peptaibols with anticancer and antifungal activity produced by filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Marik, T., Tyagi, C., Balázs, D., Urbán, P., Szepesi, A., Bakacsy, L., Endre, G., Rakk, D., Szekeres, A., Andersson, M.A., Salonen, H., Druzhinina, I., Vágvölgyi, C., and Kredics, L., Front. Microbiol., 2019, vol. 10, no. 1434, pp. 1–38.

    Article  Google Scholar 

  2. Ramachander Turaga,V.N., Peptaibols: antimicrobial peptides from fungi, in Bioactive Natural Products in Drug Discovery, Singh, J., Eds., Springer Nature Singapore Ltd., pp. 713–730. https://doi.org/10.1007/978-981-15-1394-7_26

  3. Ayers, S., Ehrmann, B.M., Adcock, A.F., Kroll, D.J., Carcache de Blanco, E.J., Shen, Q., Swanson, S.M., Falkinham, J.O., Wani, M.C., Mitchell, S.M., Pearce, C.J., and Oberlies, N.H., J. Pept. Sci., 2012, vol. 18, no. 8, pp. 500–510. https://doi.org/10.1002/psc.2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, P., Xue, Y., Li, X., Jinghua, L., Zhanqin, Z., Chunshan, Q., Weina, G., Xiangyang, Z., Xuefei, B., and Shuxiao, F., Peptides, 2019, vol. 113, pp. 52–65. https://doi.org/10.1016/j.peptides.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Park, S.C., Park, Y., and Hahm, K.S., Int. J. Mol. Sci., 2011, vol. 12, no. 9, pp. 5971–5992. https://doi.org/10.3390/ijms12095971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Touati, I., Ruiz, N., Thomas, O., Druzhinina, I.S., Atanasova, L., Tabbene, O., Elkahoui, S., Benzekri, R., Bouslama, L., Pouchus, Y.F., and Limam, F., World J. Microbiol. Biotechnol., 2018, vol. 34, no. 98, pp. 1–12. https://doi.org/10.1007/s11274-018-2482-z

    Article  CAS  Google Scholar 

  7. Stoppacher, N., Neumann, N.K., Burgstaller, L., Zeilinger, S., Degenkolb, T., Brückner, H., and Schuhmacher, R., Chem. Biodiversity, 2013, vol. 10, pp. 734–743. https://doi.org/10.1002/cbdv.201200427

    Article  CAS  Google Scholar 

  8. Waghu, F.H. and Idicula-Thomas, S., Protein Sci., 2020, vol. 29, pp. 36–42. https://doi.org/10.1002/pro.3714

    Article  CAS  PubMed  Google Scholar 

  9. Anke, H., ChemBioChem, 2009, vol. 10, pp. 2266–2267. https://doi.org/10.1002/cbic.200900404

    Article  CAS  Google Scholar 

  10. Marik, T., Tyagi, C., Racic, G., Rakk, D., Szekeres, A., Vágvölgyi, C., and Kredics, L., Microorganisms, 2018, vol. 6, no. 85, pp. 1–16. https://doi.org/10.3390/microorganisms6030085

    Article  CAS  Google Scholar 

  11. Mohamed-Benkada, M., Pouchus, Y.F., Vérité, P., Pagniez, F., Caroff, N., and Ruiz, N., Chem. Biodiversity, 2016, vol. 13, pp. 521–530.

    Article  CAS  Google Scholar 

  12. Oh, L., Kim, S.J., and Yoo, J.H., Tetrahedron Lett., 2000, vol. 41, no. 1, pp. 61–64. https://doi.org/10.1016/S0040-4039(99)02000-6

    Article  CAS  Google Scholar 

  13. Degenkolb, T., von Dohren, H., Fog, NielsenK., Samuels, G.J., and Brückner, H., Chem. Biodiversity, 2008, vol. 5, pp. 671–680. https://doi.org/10.1002/cbdv.200890064

    Article  CAS  Google Scholar 

  14. Ishiyama, D., Satou, T., Senda, H., Fujimaki, T., Honda, R., and Kanazawa, S., J. Antibiot. (Tokyo), 2000, vol. 53, pp. 728–732. https://doi.org/10.7164/antibiotics.53.728

    Article  CAS  Google Scholar 

  15. Inostroza, A., Lara, L., Paz, C., Perez, A., Galleguillos, F., Hernandez, V., Becerra, J., González-Rocha, G., and Silva, M., Nat. Prod. Res., 2018, vol. 32, no. 11, pp. 1361–1364. https://doi.org/10.1080/14786419.2017.1344655

    Article  CAS  PubMed  Google Scholar 

  16. Ovchinnikova, T.V., Levitskaya, N.G., Voskresenskaya, O.G., Yakimenko, Z.A., Tagaev, A.A., Ovchinnikova, A.Y., Murashev, A.N., and Kamenskii, A.A., Chem. Biodiversity, 2007, vol. 4, no. 6, pp. 1374–1387. https://doi.org/10.1002/cbdv.200790117

    Article  CAS  Google Scholar 

  17. Rogozhin, E.A., Sadykova, V.S., Baranova, A.A., Vasilchenko, A.S., Lushpa, V.A., Mineev, K.S., Georgieva, M.L., Kul’ko, A.B., Krasheninnikov, M.E., Lyundup, A.V., Vasilchenko, A.V., and Andreev, Y.A., Molecules, 2018, vol. 23, no. 2785, pp. 1–12. https://doi.org/10.3390/molecules23112785

    Article  CAS  Google Scholar 

  18. Otto, A., Laub, A., Porzel, A., Jurgen, Schmidt J., Wessjohann, L., Westermann, B., and Arnold, N., Eur. J. Org. Chem., 2015, vol. 34, pp. 7449–7459. https://doi.org/10.1002/ejoc.201501124

    Article  CAS  Google Scholar 

  19. Rivera-Chavez, J., Huzefa, A.R., Graf, T.N., Gallagher, J.M., Metri, P., Xue, D., Pearcec, C.J., and Oberlies, N.H., RSC Advances, vol. 7, no. 72, pp. 75733–75741. https://doi.org/10.1039/c7ra09602j

  20. Höfer, S., Berg, A., Bruckner, H., and Mayerhofer, T.G., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, vol. 223, no. 117368, pp. 1–8. https://doi.org/10.1016/j.saa.2019.117368

    Article  CAS  Google Scholar 

  21. Brückner, H., Fox, S., and Degenkolb, T., Chem. Biodiversity, 2019, vol. 16, no. 9, pp. 1–22. Art. e1900276. https://doi.org/10.1002/cbdv.201900276

  22. Wang, C., Wu, P., Yao, L., Xue, J., Xu, L., Li, H., Deng, W., and Wei, X., J. Antibiot. (Tokyo), 2018, vol. 71, no. 11, pp. 927–938. https://doi.org/10.1038/s41429-018-0086-3

    Article  CAS  Google Scholar 

  23. Quandt, C.A., Bushley, K.E., and Spatafora, J.W., BMC Genomics, 2015, vol. 16, no. 553, pp. 1–14. https://doi.org/10.1186/s12864-015-1777-9

    Article  CAS  Google Scholar 

  24. Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Pedone, C., Toniolo, C., and Bonora, G.M., Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 79, pp. 7951–7954. https://doi.org/10.1073/pnas.79.24.7951

    Article  Google Scholar 

  25. Marik, T., Urban, P., Tyagi, C., Szekeres, A., Leitgeb, B., Vagvolgyi, M., Manczinger, L., Druzhinina, I.S., and Kredics, L., Chem. Biodiversity, 2017, vol. 14. https://doi.org/10.1002/cbdv.201700033

  26. Shi, M., Chen, L., Wang, X.W., Zhang, T., Zhao, P.B., Song, X.Y., Sun, C.Y., Chen, X.L., Zhou, B.C., and Zhang, Y.Z., Microbiology, 2012, vol. 158, pp. 166–175. https://doi.org/10.1099/mic.0.052670-0

    Article  CAS  PubMed  Google Scholar 

  27. Song, X.Y., Shen, Q.T., Xie, S.T., Chen, X.L., Sun, C.Y., and Zhang, Y.Z., Microbiol. Lett., 2006, vol. 260, pp. 119–125. https://doi.org/10.1111/j.1574-6968.2006.00316.x

    Article  CAS  Google Scholar 

  28. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., and Vágvölgyi, C., Acta Microbiol. Immunol. Hung., 2005, vol. 52, pp. 137–168. https://doi.org/10.1556/AMicr.52.2005.2.2

    Article  CAS  PubMed  Google Scholar 

  29. Neuhof, R., Dieckmann, R., Druzhinina, I.S., Kubicek, C.P., and von Döhren, H., Microbiology, 2007, vol. 153, pp. 3417–3437. https://doi.org/10.1099/mic.0.2007/006692-0

    Article  CAS  PubMed  Google Scholar 

  30. Tyagi, C., Marik, T., Vagvolgyi, C., Kredics, L., and Otvos, F., Int. J. Mol. Sci., 2019, vol. 20, no. 4268, pp. 1–19. https://doi.org/10.3390/ijms20174268

    Article  CAS  Google Scholar 

  31. Oh, S.U., Yun, B.S., Lee, S.J., Kim, J.H., and Yoo, I.D., J. Antibiot. (Tokyo), 2002, vol. 55, pp. 557–564. https://doi.org/10.7164/antibiotics.55.557

    Article  CAS  Google Scholar 

  32. Ding, G., Chen, L., Zhou, C., Jia, H.M., Liu, Y.T., Chang, X., Song, B., Liu, X.Z., Gu, Y.C., and Zou, Z.M., J. Antibiot., 2015, vol. 68, pp. 409–413. https://doi.org/10.1038/ja.2015.1

    Article  CAS  Google Scholar 

  33. Singh, V.P., Yedukondalu, N., Sharma, V., Kushwaha, M., Sharma, R., Chaubey, A., Kumar, A., Singh, D., and Vishwakarma, R.A., J. Nat. Prod., 2018, vol. 81, pp. 219–226.

    Article  CAS  Google Scholar 

  34. Katoch, M., Singh, D., Kapoor, K.K., and Vishwakarma, R.A., BMC Microbiol., 2019, vol. 19, no. 98, pp. 1–10. https://doi.org/10.1186/s12866-019-1477-8

    Article  CAS  Google Scholar 

  35. Zotti, M.D., Biondi, B., Peggion, C., Park, Y., Hahm, K.S., Formaggio, F., and Toniolo, C., J. Pept. Sci., 2011, vol. 17, pp. 5855–5894. https://doi.org/10.1002/psc.1364

    Article  CAS  Google Scholar 

  36. Lizio, M.G., Campana, M., de Poli, M., Jefferies, D.F., Cullen, W., Andrushchenko, V., Chmel, N.P., Bouř, P., Khalid, S., Clayden, J., Blanch, E., Rodger, A., Simon, J., and Webb, S.J., ChemBioChem, 2021, vol. 22, pp. 1–13.

    Article  Google Scholar 

  37. Shenkarev, Z.O., Paramonov, A.S., Lyukmanova, E.N., Gizatullina, A.K., Zhuravleva, A.V., Tagaev, A.A., Yakimenko, Z.A., Telezhinskaya, I.N., Kirpichnikov, M.P., Ovchinnikova, T.V., and Arseniev, A.S., Chem. Biodiversity, 2013, vol. 10, no. 5, pp. 838–863. https://doi.org/10.1002/cbdv.201200421

    Article  CAS  Google Scholar 

  38. Berg, A., Grigoriev, P.A., Degenkolb, T., Neuhof, T., Hartl, A., Schlegel, B., and Grafe, U., J. Pept. Sci., 2003, vol. 9, pp. 810–816. https://doi.org/10.1002/psc.498

    Article  CAS  PubMed  Google Scholar 

  39. Baranova, A.A., Rogozhin, E.A., Georgieva, M.L., Bilanenko, E.N., Kulko, A.B., Yakushev, A.V., Alferova, V.A., and Sadykova, V.S., Appl. Biochem. Microbiol., 2019, vol. 55, no. 2, pp. 145–151. https://doi.org/10.1134/S0003683819020030

    Article  CAS  Google Scholar 

  40. Kredics, L., Szekeres, A., Czifra, D., Vágvölgyi, C., and Leitgeb, B., Chem. Biodiversity, 2013, vol. 10, pp. 744–771. https://doi.org/10.1002/cbdv.201200390

    Article  CAS  Google Scholar 

  41. Summers, M.Y., Kong, F., Feng, X., Siegel, M.M., Janso, J.E., Graziani, E.I., and Carter, G.T., J. Nat. Prod., 2007, vol. 70, pp. 391–396. https://doi.org/10.1021/np060571q

    Article  CAS  PubMed  Google Scholar 

  42. Nelissen, J., Nuyts, K., de Zotti, M., Lavigne, R., Lamberigts, C., and de Borggraeve, W.M., PLoS One, 2012, vol. 7, no. e51708, pp. 1–6. https://doi.org/10.1371/journal.pone.0051708

    Article  CAS  Google Scholar 

  43. Berg, A., Grigoriev, P.A., Degenkolb, T., Neuhof, T., Hartl, A., Schlegel, B., and Grafe, U., J. Peptide Sci., 2003, vol. 9, pp. 810–816. https://doi.org/10.1002/psc.498

    Article  CAS  Google Scholar 

  44. Perlatti, B., Nichols, C.N., Alspaugh, J.A., James, B., Gloer, J.B., and Bills, G.F., Biomolecules, 2020, vol. 10, no. 1371, pp. 1–15. doihttps://doi.org/10.3390/biom10101371

    Article  CAS  Google Scholar 

  45. Baranova, A.A., Georgieva, M.L., Bilanenko, E.N., Andreev, Ya.A., Rogozhin, E.A., and Sadykova, V.S., Appl. Biochem. Microbiol., 2017, vol. 53, pp. 703–710. https://doi.org/10.1134/S0003683817060035

    Article  CAS  Google Scholar 

  46. Kuvarina, A.E., Gavryushina, I.A., Kulko, A.B., Ivanov, I.A., Rogozhin, E.A., Georgieva, M.L., and Sadykova, V.S., J. Fungi, 2021, vol. 7, no. 153, pp. 1–19. https://doi.org/10.3390/jof7020153

    Article  CAS  Google Scholar 

  47. Zhao, P., Ren, A., Dong, P., and Sheng, Y., Appl. Biochem. Microbiol., 2018, vol. 54, no. 4, pp. 396–403. https://doi.org/10.1134/S0003683818040154

    Article  CAS  Google Scholar 

  48. Grigoletto, D.F., Trivella, D.B.B., Tempone, A.G., Rodrigues, A., Correia, A.M.L., and Lira, S.P., Braz. J. Microbiol., 2020, vol. 51, pp. 989–997. https://doi.org/10.1007/s42770-020-00270-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogozhin, E.A. and Sadykova, V.S., Proceedlings, 2019, vol. 22, no. 4, p. 1. https://doi.org/10.3390/proceedings2019022004

    Article  Google Scholar 

  50. Rivera-Chavez, J., Raja, H.A., Graf, T.N., Gallagher, J.M., Metri, P., Xue, D., Pearce, C.J., and Oberlies, N.H., R. Soc. Chem., 2017, vol. 7, pp. 45733–45741. https://doi.org/10.1039/C7RA09602J

    Article  CAS  Google Scholar 

  51. Li, M.-F., Li, G.-H., and Zhang, K.-Q., Metabolites, 2019, vol. 9, no. 58, pp. 1–24. https://doi.org/10.3390/metabo9030058

    Article  CAS  Google Scholar 

  52. Rivera-Chavez, J., Raja, H.A., Graf, T.N., Gallagher, J.G., Metri, P., Xue, D., Pearce, C.J., and Oberlies, N.H., RSC Adv., 2017, vol. 7, pp. 45733–45741. https://doi.org/10.1039/C7RA09602J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Degenkolb, T., Fog, K., Dieckmann, N.D., Rocha, F.B., Chaverri, P., Samuels, G.J., Thrane, U., von Dohren, H., Vilcinskas, A., and Bruckner, H., Chem. Biodiversity, 2015, vol. 12, pp. 662–684. https://doi.org/10.1002/cbdv.201400300

    Article  CAS  Google Scholar 

  54. Lee, J.W., Collins, J.E., Wendt, K.L., Chakrabarti, D., and Cichewicz, R.H., J. Nat. Prod., 2021, vol. 84, no. 2, pp. 503–517. https://doi.org/10.1021/acs.jnatprod.0c01370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh, V.P., Pathania, A.S., Kushwaha, M., Singh, S., Sharma, V., Malik, F.A., Khan, I., Kumar, A., Singh, D., and Vishwakarma, R.A., RSC Adv., 2020, vol. 10, no. 52, pp. 31233–31242. https://doi.org/10.1039/D0RA05780K

    Article  CAS  Google Scholar 

  56. Rawa, M.S.A., Nogawa, T., Okano, A., Futamura, Y., Nakamura, T., Wahab, H.A., and Osada, H., Biosci. Biotechnol. Biochem., 2021, vol. 85, no. 1, pp. 69–76. https://doi.org/10.1093/bbb/zbaa051

    Article  PubMed  Google Scholar 

  57. Martinez, A.F. and Moraes, L.A., J. Antibiot. (Tokyo), 2015, vol. 68, no. 3, pp. 178–184. https://doi.org/10.1038/ja.2014.120

    Article  CAS  Google Scholar 

  58. Claudon, P., Violette, A., Lamour, K., Decossas, M., Fournel, S., Heurtault, B., Godet, J., Mely, Y., Jamart-Gregoire, B., Averlant-Petit, M.C., Briand, J.P., Duportail, G., Monteil, H., and Guichard, G., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, pp. 333–336.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Russian Foundation for Basic Research project no. 20-04-00992.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Kuvarina or V. S. Sadykova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavryushina, I.A., Georgieva, M.L., Kuvarina, A.E. et al. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). Appl Biochem Microbiol 57, 556–563 (2021). https://doi.org/10.1134/S0003683821050070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050070

Keywords:

Navigation