Skip to main content
Log in

Potential Applications in Sewage Bioremediation of the Highly Efficient Pyridine-Transforming Paenochrobactrum sp.

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A pyridine-transforming strain P2 was isolated from sewage collected from Guangzhou oil stain field(China).According to the system analysis, it was identified as a member of the genus Paenochrobactrum. Comparative phylogenetic analysis based on the 16S rRNA and recA gene sequence showed that the isolate displayed the highest gene sequence similarity with members of the genus Paenochrobactrum, with Paenochrobactrum glaciei pi26T as the most closely related phylogenetic species (The similarity of gene sequence of gene sequence was 100 and 96.1% for 16S rRNA and recA, respectively).The G+C content of the genomic DNA of strain P2 was 57.2 ± 9.7%. The morphological and biochemical properties and DNA-DNA hybridization experiments revealed that strain P2 shows only 32.7 ± 2.6 to 42.7 ± 1.9% reassociation with the other Paenochrobactrum species. This strain could completely degrade 500 mg/L pyridine within 8 h at 30°C. The laboratory scale experiments of pyridine bioremediation of artificial mixed wastewater revealed that the removal of pyridine significantly increased after inoculation of bacteria. The strain P2 is a promising strain for the remediation of pyridine-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Malki, A., Mohsen, M., Aziz, H., Rizk, O., Shaban, O., El-Sayed, M., et al., Molecules, 2016, vol. 21, no. 2, p. 230.

    Article  Google Scholar 

  2. Wang, W.W., Xu, P., and Tang, H.Z., Sci. Rep., 2015, vol. 17, no. 5, p.16411.

    Article  Google Scholar 

  3. Weissgram, M., Gstöttner, J., Lorantfy, B., Tenhaken, R., Herwig, C., and Weber, H.K., Microorganisms, 2015, vol. 3, no. 2, pp. 268–289.

    Article  CAS  Google Scholar 

  4. Nzila, A., Razzak, S.A., and Zhu, J., Int. J. Environ. Res. PublicHealth, 2016, vol. 13, no. 9, p. E846.

    Article  Google Scholar 

  5. Yu, H., Tang, H.Z., Li, Y.Y., and Xu, P., Appl. Environ. Microbiol., 2015, vol. 81, no. 24, pp. 8330–8338.

    Article  CAS  Google Scholar 

  6. Murashko, O.N. and Chao, S.L., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 38, pp. E8025–E8034.

    Article  CAS  Google Scholar 

  7. Yoshikawa, M., Zhang, M., and Toyota, K., Water Air Soil Pollut., 2017, vol. 228, no. 1, p. 25.

    Article  Google Scholar 

  8. Chen, Y.F., Zhou, D.B., Qi, D.F., Gao, Z.F., Xie, J.H., and Luo, Y.P., Front. Microbiol., 2017, vol. 8, p. 2704.

    Article  Google Scholar 

  9. Pekas, A., Palevsky, E., Sumner, J.C., Perotti, M.A., Nesvorna, M., and Huber, J., Sci. Rep., 2017, vol. 7, p. 2.

    Article  Google Scholar 

  10. Mao, Z., Yu, C.Y., and Xin, L.L., Int. J. Mol. Sci., 2015, vol. 16, no. 4, pp.7320–7333.

    Article  CAS  Google Scholar 

  11. Ceniceros, A., Dijkhuizen, L., Petrusma, M., and Medema, M.H., BMC Genomics, 2017, vol. 18, p. 593.

    Article  Google Scholar 

  12. Decewicz, P., Dziewit, L., Golec, P., Kozlowska, P., Bartosik, D., and Radlinska, M., Sci. Rep., 2019, vol. 9, p. 7899.

    Article  Google Scholar 

  13. Grouzdev, D.S., Babich, T.L., Sokolova, D.S., Tourova, T.P., Poltaraus, A.B., and Nazina, T.N., Data Brief., 2019, vol. 25, p. 104319.

    Article  Google Scholar 

  14. Deng, Y., Wang, Y., Mao, Y., and Zhang, T., Environ. Sci. Technol., 2018, vol. 52, no. 5, pp. 2963–2972.

    Article  CAS  Google Scholar 

  15. García-López, M., Meier-Kolthoff, J.P., Tindall, B.J., Gronow, S., Woyke, T., et al., Front. Microbiol., 2019, vol. 10, p. 2083.

    Article  Google Scholar 

  16. Becerra, S.C., Roy, D.C., Sanchez, C.J., Christy, R.J., and Burmeister, D.M., BMC Res. Notes, 2016, vol. 9, p. 216.

    Article  Google Scholar 

  17. Zhang, G.X., Ren, S.Z., Xu, M.Y., Zeng, G.Q., Luo, H.D., Chen, J.L., et al., Int. J. Syst. Evol.Microbiol., 2011, vol. 61, no. 4, pp. 816–822.

    Article  CAS  Google Scholar 

  18. Niu, J.J and Conway, B.E., J. Electroanalyt. Chem., 2002, vol. 521, no. 8, pp. 16–28.

    Article  CAS  Google Scholar 

  19. Zhou, H., Liao, J., Xia, Y.P., and Teng, Y.W., J. Zhejiang. Univ. Sci. B., 2013, vol. 14, no. 4, pp. 299–308.

    Article  CAS  Google Scholar 

  20. Westfall, H.N., Edman, D.C., and Weiss, E., J. Clin. Microbiol., 1984, vol. 19, no. 3, pp. 305–310.

    Article  CAS  Google Scholar 

  21. Cheng, X.Y., Tian, X.L., Wang, Y.S., Lin, R.M., Mao, Z.C., Chen, N.S., and Xie, B.Y., Sci. Rep., 2013, vol. 3, p. 1869.

    Article  Google Scholar 

  22. Żur, J., Piński, A., Aarchlewicz, A., Hupert-Kocurek, K., Wojcieszyńska, D., and Guzik, U., Environ. Sci. Pollut. Res. Int., 2018, vol. 25, no. 22, pp. 21498–21524.

    Article  Google Scholar 

  23. Padoley, K.V., Mudliar, S.N., and Pandey, R.A., Bioproc. Biosyst. Eng., 2009, vol. 32, no. 4, pp. 501–510.

    Article  CAS  Google Scholar 

  24. Sun, J.Q., Xu, L., Tang, Y.Q., Chen, F.M., Zhao, J.J., and Wu, X.L., Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 455–464.

    Article  CAS  Google Scholar 

  25. Kim, J.R. and Ahn, Y.J., Biodegradation, 2009, vol. 20, no. 4, pp. 487–497.

    Article  CAS  Google Scholar 

  26. Kämpfer, P., Scholz, H.C., Huber, B., Thummes, K., Busse, H.J., Maas, E.W., and Falsen, E., Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 755–760.

    Article  Google Scholar 

  27. Romanenko, L.A., Tanaka, N., Frolova, G.M., and Mikhailov, V.V., Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 2454–2458.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (NSFC 31500076), Science and Technology Program of Guangzhou, China (20190401016) and Guangzhou Municipal Science and Technology Project (20191A011063).

Author information

Authors and Affiliations

Authors

Contributions

X. Zhao and L. Chen contributed equally to this work.

Corresponding author

Correspondence to G. Zhang.

Ethics declarations

Authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, L., Ren, Q. et al. Potential Applications in Sewage Bioremediation of the Highly Efficient Pyridine-Transforming Paenochrobactrum sp.. Appl Biochem Microbiol 57, 344–350 (2021). https://doi.org/10.1134/S0003683821030145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821030145

Keywords:

Navigation