Skip to main content
Log in

Impact of Transcriptional Regulation by Crp, FruR, FlhD, and TyrR on L-tryptophan Biosynthesis in Escherichia coli

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Transcriptional regulation plays a pivotal role in metabolic flow, which can, in turn, affect L-Trp biosynthesis in Escherichia coli. The application of global transcriptional regulation by Crp, FruR, FlhD, and TyrR for L-Trp biosynthesis during shake-flask fermentation of E. coli FB-04/pSV03, an L-Trp-producing strain, was elucidated. Inactivation of TyrR was phenotypically silent, whereas, absence of the Crp caused a noticeable reduction in L-Trp yield and a pronounced slow-growth phenotype. Lacking FlhD led to a decrease in the acetate level; however, the L-Trp yield also decreased. When FruR was inactivated, the L-Trp biosynthesis and the biotransformation rate were improved by 59.5 and 52.4%, respectively. However, using the same strain with deleted fruR-gene, for fed-batch cultivation in a 3-L reactor leads to a significant decrease in L-Trp biosynthesis and the conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhu, D., Bai, Z., Ma, H., Tan, L., Pang, H., and Wang, X., Sensors Actuators B: Chem., 2020, vol. 309, art. 127787.

    Article  CAS  Google Scholar 

  2. Zhao, C., Fang, H., Wang, J., Zhang, S., Zhao, X., Li, Z., et al., Biotechnol. Prog., 2020, vol. 36, e2944.

    CAS  PubMed  Google Scholar 

  3. Liu, L.N., Duan, X.G., and Wu, J., J. Biotechnol., 2016, vol. 231, pp. 141–148.

    Article  CAS  Google Scholar 

  4. Wang, J., Cheng, L.K., Wang, J., Liu, Q., Shen, T. and Chen, N., Appl. Microbiol. Biotechnol. 2013, vol. 97, no. 17, pp. 7587–7596.

    Article  CAS  Google Scholar 

  5. Liu, L., Bilal, M., Luo, H., Zhao, Y., and Iqbal, H., Processes, 2019, vol. 7, art. 213.

    Article  Google Scholar 

  6. Chen, L. and Zeng, A.P., Appl. Microbiol. Biotechnol., 2017, vol. 101 pp. 559–568.

    Article  CAS  Google Scholar 

  7. Niu, H., Li, R., Liang, Q., Qi, Q., Li, Q., and Gu, P., J. Ind. Microbiol. Biotechnol., 2019, vol. 46, pp. 55–65.

    Article  CAS  Google Scholar 

  8. Chan, E.C., Tsai, H.L., Chen, S.L., and Mou, D.G., Appl. Microbiol. Biotechnol., 1993, vol. 40, nos. 2–3, pp. 301–305.

    Article  CAS  Google Scholar 

  9. Pizer, L.I., J. Biol. Chem., 1963, vol. 238, pp. 3934–3944.

    Article  CAS  Google Scholar 

  10. Gottesman, S., Ann. Rev. Genet., 1984, vol. 18, no. 1, pp. 415–441.

    Article  CAS  Google Scholar 

  11. Schmid, J.W., Mauch, K., Reuss, M., Gilles, E.D., and Kremling, A., Met. Eng., 2004, vol. 6, no. 4, pp. 364–377.

    Article  CAS  Google Scholar 

  12. Harman, J.G. and Dobrogosz, W.J., J. Bacteriol., 1983, vol. 153, no.1, pp. 191–199.

    Article  CAS  Google Scholar 

  13. Perrenoud, A. and Sauer, U., J. Bacteriol., 2005, vol. 187, no.9, pp. 3171–3179.

    Article  CAS  Google Scholar 

  14. Ramseier, T.M., Bledig, S., Michotey, V., Feghali, R., and Saier, M.H., Mol. Microbiol., 1995, vol. 16, no. 6, pp. 1157–1169.

    Article  CAS  Google Scholar 

  15. Ramseier, T.M., Nègre, D., Cortay, J.C., Scarabel, M., Cozzone, A.J., and Saier, M.H., J. Mol. Biol., 1993, vol. 234, no. 1, pp. 28–44.

    Article  CAS  Google Scholar 

  16. Ow, S.W., Lee, M.Y., Nissom, P.M., Philp, R., Oh, K.W. and Yap, G.S., J. Biotechnol., 2007, vol. 131, no. 3, pp. 261–269.

    Article  CAS  Google Scholar 

  17. Prüss, B.M., Campbell, J.W., Van Dyk, T.K., Zhu, C., Kogan, Y., and Matsumura, P., J. Bacteriol., 2003, vol. 185, no. 2, pp. 534–543.

    Article  Google Scholar 

  18. Unden, G. and Bongaerts, J., Biochimi. Biophys. Acta, 1997, vol. 1320, no. 3, pp. 217–234.

    Article  CAS  Google Scholar 

  19. Han, K., Lim, H.C., and Hong, J., Biotechnol. Bioeng., 1992, vol. 39, no. 6, pp. 663–671.

    Article  CAS  Google Scholar 

  20. Suarez, D.C. and Kilikian, B.V., Process Biochem., 2000, vol. 35, no. 9, pp. 1051–1055.

    Article  CAS  Google Scholar 

  21. Zhu, T., Phalakornkule, C., Koepsel, R.R., Domach, M.M., and Ataai, M.M., Biotechnol. Prog., 2001, vol. 17, no. 4, pp. 624–628.

    Article  CAS  Google Scholar 

  22. Pittard, J., Camakaris, H., and Yang, J., Mol. Microbiol., 2005, vol. 55, no. 1, pp. 16–26.

    Article  CAS  Google Scholar 

  23. Zhao, Z.J., Zou, C., Zhu, Y.X., Dai, J., Chen, S., Wu, D., et al., J. Indus. Microbiol. Biotechnol., 2011, vol. 38, no. 12, pp. 1921–1929.

    Article  CAS  Google Scholar 

  24. Baba, T., Ara, T., Hasegawa, M.,Takai, Y., Okumura, Y., Baba, M., et al., Mol. Sys. Biol., 2006, vol. 2, art. 2006.0008.

  25. Sambrook, J. and Russell, D., Molecular Cloning: A Laboratory Manual, 3rd ed., New York: Cold Spring Harbor, 2001.

  26. Liu, L.N., Duan, X.G., and Wu, J., PLoS One, 2016, vol. 11, no. 6, e0158200.

    Article  Google Scholar 

  27. Gao, X., Pujos-Guillot, E., and Sébédio, J.L., Anal. Biochem., 2010, vol. 82, no. 15, pp. 6447–6456.

    CAS  Google Scholar 

  28. Tian, Z.X., Li, Q.S., Buck, M., Kolb, A., and Wang, Y.P., Mol. Microbiol., 2010, vol. 4, no. 4, pp. 911–924.

    Google Scholar 

  29. Shang, L., Fan, C.S., Jin, R.L., Liu, D.X., Wang, J.G., Yin, J., et al., Acta Biochim. Biophys. Sin., 2003, vol. 35, no. 8, pp. 728–733.

    CAS  PubMed  Google Scholar 

  30. Sugimoto, E. and Pizer, L.I., J. Biol. Chem., 1968, vol. 243, no. 9, pp. 2090–2098.

    Article  CAS  Google Scholar 

  31. Ezzell, J.W. and Dobrogosz, W.J., J. Bacteriol., 1975, vol. 124, no. 2, pp. 815–824.

    Article  CAS  Google Scholar 

  32. Postma, P.W., Lengeler, J.W., and Jacobson, G.R., Microbiol. Rev., 1993, vol. 57, no. 3, pp. 543–594.

    Article  CAS  Google Scholar 

  33. Chang, D.E., Shin, S., Rhee, J.S., and Pan, J.G., J. Bacteriol., 1999, vol. 181, no. 21, pp. 6656–6663.

    Article  CAS  Google Scholar 

  34. Yao, R., Kurata, H., and Shimizu, K., Adv. Biosci. Biotechnol., 2013, vol. 4, no. 3, pp. 477–486.

    Article  Google Scholar 

  35. Son, Y.J., Phue, J.N., Trinh, L.B., Lee, S.J., and Shiloach, J., Microb. Cell Factories, 2011, vol. 10, art. 52.

Download references

Funding

This work was supported by financial support from the Natural Science Foundation of Jiangsu Province (BK20170459), China; the National Natural Science Foundation of China (21808075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Liu or M. Bilal.

Ethics declarations

The authors report no conflict of interest in any capacity, i.e., competing or financial. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Bilal, M., Luo, H. et al. Impact of Transcriptional Regulation by Crp, FruR, FlhD, and TyrR on L-tryptophan Biosynthesis in Escherichia coli . Appl Biochem Microbiol 57, 319–326 (2021). https://doi.org/10.1134/S0003683821030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821030091

Keywords:

Navigation