Skip to main content
Log in

Small RNAs of Mycobacterium tuberculosis in Adaptation to Host-Like Stress Conditions in vitro

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The regulatory mechanisms of pathogenic bacteria contribute to their survival under stress conditions in the host environment, which allows them to avoid the immune system of the macroorganism. Small, noncoding RNAs were previously found to regulate some metabolic processes of Mycobacterium tuberculosis. We have revealed that the viability of M. tuberculosis in host-like conditions depends on the expression level of small RNAs. Strains overexpressing small RNA MTS1338 and MTS0997 in M. tuberculosis were produced, and their survival under stressful conditions in vitro and in infected human macrophages were studied. We found that overexpression of the small, noncoding RNA MTS1338 increased bacterial resistance to the stressful effects of hydrogen peroxide, nitric oxide, an acidic environment, and a long-term lack of nutrients at different growth phases and contributed to the viability of bacteria in infected macrophages. An overexpression of the small, noncoding RNA MTS0997 did not significantly affect cell viability under stress conditions. Thus, the two studied small RNAs play different roles in the mycobacterial adaptation to intracellular stresses during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Azhikina, T.L., Ignatov, D.V., Salina, E.G., Fursov, M.V., and Kaprel’yants, A.S., Usp. Biol. Khim., 2015, vol. 55, pp. 3–32.

    Google Scholar 

  2. Gottesman, S. and Storz, G., Cold Spring Harb. Symp. Quant. Biol., 2011, vol. 71, pp. 1–16.

    Article  Google Scholar 

  3. Haning, K., Cho, S.H., Contreras, L.M., and Murphy, E.R., Front. Cell. Infect. Microbiol., 2014, vol. 4, pp. 1–11.

    Article  Google Scholar 

  4. World Health Organization, Global Tuberculosis Report, Geneva, 2019. ISBN 978-92-4-156571-4.

  5. Dye, C., Lancet, 2006, vol. 367, no. 9514, pp. 938–940.

    Article  Google Scholar 

  6. Schwenk, S. and Arnvig, K.B., Pathog. Dis., vol. 76, no. 4, pp. 1–12.

  7. Namouchi, A., Gomez-Munoz, M., Frye, S.A., Moen, L.V., Rognes, T., Tonjum, T., and Balasingham, S.V., BMC Genomics, 2016, vol. 17, no. 1, pp. 1–13.

    Article  Google Scholar 

  8. Solans, L., Gonzalo-Asensio, J., Sala, C., Benjak, A., Uplekar, S., Rougemont, J., Guilhot, C., Malaga, W., Martín, C., and Cole, S.T., PLoS Pathog., 2014, vol. 10, no. 5, pp. 1–17.

    Article  Google Scholar 

  9. Gerrick, E.R., Barbier, T., Chase, M.R., Xu, R., Francois, J., Lin, V.H., Szucs, M.J., Rock, J.M., Ahmad, R., Tjaden, B., Livny, J., and Fortune, S.M., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 25, pp. 6464–6469.

    Article  CAS  Google Scholar 

  10. Mai, J., Rao, C., Watt, J., Sun, X., Lin, Z., Zhang, L., and Liu, J., Nucleic Acids Res., 2019, vol. 47, no. 8, pp. 4292–4307.

    Article  CAS  Google Scholar 

  11. Salina, E.G., Grigorov, A., Skvortsova, Y., Majorov, K., Bychenko, O., Ostrik, A., Logunova, N., Ignatov, D., Kaprelyants, A., Apt, A., and Azhikina, T., Front. Cell. Infect. Microbiol., 2019, vol. 9, no. 405, pp. 1–11.

    Article  Google Scholar 

  12. Arnvig, K.B., Comas, I., Thomson, N.R., Houghton, J., Boshoff, H.I., Croucher, N.J., Rose, G., Perkins, T., Parkhill, J., Dougan, G., and Young, D.B., PLoS Pathog., 2011, vol. 7, no. 11, pp. 1–16.

    Article  Google Scholar 

  13. Pelly, S., Bishai, W.R., and Lamichhane, G., Gene, 2012, vol. 500, no. 1, pp. 85–92.

    Article  CAS  Google Scholar 

  14. Girardin, R.C., Bai, G., He, J., Sui, H., and McDonough, K.A., Mol. Microbiol., 2018, vol. 110, no. 5, pp. 811–830.

    Article  CAS  Google Scholar 

  15. Girardin, R.C. and McDonough, K.A., Mol. Microbiol., 2019, vol. 111, no. 5, pp. 1–17.

    Google Scholar 

  16. Moores, A., Riesco, A.B., Schwenk, S., and Arnvig, K.B., PLoS One, 2017, vol. 12, no. 3, pp. 1–27.

    Article  Google Scholar 

  17. Ignatov, D.V., Salina, E.G., Fursov, M.V., Skvortsov, T.A., Azhikina, T.L., and Kaprelyants, A.S., BMC Genomics, 2015, vol. 16, no. 1, pp. 1–13.

    Article  Google Scholar 

  18. Rustad, T.R., Roberts, D.M., Liao, R.P., and Sherman, D.R., Methods Mol. Biol., 2009, vol. 465, pp. 13–21.

    Article  Google Scholar 

  19. Shleeva, M.O., Kudykina, Y.K., Vostroknutova, G.N., Suzina, N.E., Mulyukin, A.L., and Kaprelyants, A.S., Tuberculosis, vol. 91, no. 2, pp. 146–154.

  20. DiChiara, J.M., Contreras-Martinez, L.M., Livny, J., Smith, D., McDonough, K.A., and Belfort, M., Nucleic Acids Res., 2010, vol. 38, no. 12, pp. 4067–4078.

    Article  CAS  Google Scholar 

  21. Ignatov, D.V., Logunova, N.N., and Azhikina, T.L., Bioorg. Khim., 2014, vol. 40, no. 2, pp. 253–256.

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 18-15-00332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ostrik.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrik, A.A., Salina, E.G., Skvortsova, Y.V. et al. Small RNAs of Mycobacterium tuberculosis in Adaptation to Host-Like Stress Conditions in vitro. Appl Biochem Microbiol 56, 381–386 (2020). https://doi.org/10.1134/S0003683820040122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820040122

Keywords:

Navigation