Skip to main content
Log in

Antibacterial and Immunomodulating Activity of Silver Nanoparticles on Mice Experimental Tuberculosis Model

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The antibacterial activity of silver nanoparticles with a size of 43.6 ± 10.7 nm against strain Mycobacterium tuberculosis H37Rv was studied in vitro (the studied concentrations of silver nanoparticles were 0.1; 1; 10; 25, and 50 μg/mL) and in an experimental murine model of chronic tuberculosis. It was shown that silver nanoparticles at a concentration of 50 μg/mL suppress mycobacterial growth in vitro by 2 times. The administration of silver nanoparticles via inhalation at a dose of 0.1 mg/kg to tuberculosis-infected mice resulted in a twofold decrease in the colonization of the lungs and spleens by M. tuberculosis. In these animals, the quantity of protein in the broncho-pulmonary lavage fluid was reduced by two times, to 1908.5 ± 105.7 (P < 0.001), which indicates a decrease in the inflammatory processes in the lungs. The level of the production of reactive oxygen species by neutrophils increased, reflecting their bactericidal potential, which was reduced by 2.7 times before treatment as compared to the control group of animals (P < 0.001). After the introduction of silver nanoparticles, a recovery in the ratio of lymphocyte populations in the spleen and cytokine balance was observed. It was expressed by a decrease in the levels of IFN-γ, TNF-α, and IL-4 in the blood serum and broncho-pulmonary lavage fluid in TB mice. Thus, it was shown for the first time that the inhalation of silver nanoparticles stabilized with polyvinylpyrrolidone led not only to a noticeable bactericidal effect but also recovered the balance of the immune system of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Global Tuberculosis Report 2018, Geneva: World Health Organization, 2018. Licence: CC BY-NC-SA 3.0 IGO.

  2. Caminero, J.A. and Scardigli, A., Eur. Respir. J., 2015, vol. 46, pp. 887–893.

    Article  Google Scholar 

  3. Balu, S., Reljic, R., Lewis, M.J., Pleass, R.J., McIntosh, R., Kooten, C., et al., J. Immunol., 2011, vol. 186, no. 5, pp. 3113–3119.

    Article  CAS  Google Scholar 

  4. Abate, G. and Hoft, D.F., ImmunoTargets Therap., 2016, vol. 5, pp. 37–45.

    Google Scholar 

  5. Gondil, V.S. and Chhibber, S., Biomed. Biotechnol. Res. J., 2018, vol. 2, no. 1, pp. 9–15.

    Article  Google Scholar 

  6. Kiefer, B. and Dahl, J.L., Adv. Microbiol., 2015, vol. 5, pp. 699–710.

    Article  CAS  Google Scholar 

  7. Abate, G. and Hoft, D.F., ImmunoTargets Ther., 2016, vol. 5, pp. 37–45.

    PubMed  PubMed Central  Google Scholar 

  8. Banu, A. and Rathod, V., J. Nanomed. Biotherapeut. Discov., 2013, vol. 3, no. 1. https://doi.org/10.4172/2155-983X.1000110

  9. Selim, A., Elhaig, M.M., Taha, S.A., and Nasr, E.A., Rev. Sci. Tech., 2018, vol. 37, no. 3, pp. 823–830.

    Article  CAS  Google Scholar 

  10. Alexander, J.W., Surg. Infect. (Larchmt), 2009, vol. 10, no. 3, pp. 289–292.

    Article  Google Scholar 

  11. Fastovets, I.A., Verkhovtseva, N.V., Pashkevich, E.B., and Netrusov, A.I., Probl. Agrokhim. Ekol., 2017, no. 1, pp. 51–62.

  12. Schierholz, J.M., Lucas, L.J., Rump, A., and Pulverer, G., J. Hosp. Infect., 1998, no. 40, pp. 257–262.

  13. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., et al., Molecules, 2015, vol. 20, pp. 8856–8874.

    Article  CAS  Google Scholar 

  14. Lara, H.H., Ayala-Nunez, N.V., Ixtepan-Turrent, L., and Rodriguez-Padilla, C., World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 615–621.

    Article  CAS  Google Scholar 

  15. Zakharov, A.V., Ergeshov, A.E., Khokhlov, A.L., and Kibrik, B.S., Tuberk. Bolezni Legk., 2017, vol. 95, no. 6, pp. 51–58.

    Article  Google Scholar 

  16. Arshinova, S.S., Simonova, A.V., Stakhanov, V.A., and Pinegin, B.V., Med. Immunol., 2001, vol. 3, no. 4, pp. 567–573.

    Google Scholar 

  17. Ellis, T., Chiappi, M., Garcia-Trenco, A., Al-Ejji, M., Sarkar, S., et al., CS Nano, 2018, vol. 126, pp. 5228–5240.

    Google Scholar 

  18. Ponomarev, V.A., Sheveyko, A.N., Permyakova, E.S., Lee, J., Voevodin, A.A., et al., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 32, pp. 28699–28719.

    Article  CAS  Google Scholar 

  19. Shumakova, A.A., Smirnova, V.V., Tananova, O.N., Trushina, E.N., Kravchenko, L.V., Aksenov, I.V., et al., Vopr. Pitan., 2011, vol. 80, no. 6, pp. 9–18.

    CAS  PubMed  Google Scholar 

  20. Kalmantaeva, O.V., Firstova, V.V., Potapov, V.D., Zyrina, E.V., Gerasimov, V.N., Ganina, E.A., et al., Ross. Nanotekhnol., 2014, vol. 9, nos. 9–10, pp. 78–82.

    Google Scholar 

  21. Coligan, J.E., Bierer, E.B., Margulies, H.D., Shevach, E.M., and Stroder, W., Short Protocols in Immunology: A Compendium of Methods from Current Protocols in Immunology, Coligan, J.E., Ed., Hoboken, New Jersey: Wiley, 2005.

    Google Scholar 

  22. Kaufmann, S.H.E. and Kabelitz, D., in Methods in Microbiology.Immunology of Infection, 2nd ed., Kaufmann, S.H.E. and Kabelitz, D., Eds., London: Academic, 2002, vol. 32.

    Google Scholar 

  23. Cardona, P.J., Understanding Tuberculosis, Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity, Cardona, P.J., Ed., Croatia: InTech, 2012.

    Book  Google Scholar 

  24. Kolobovnikova, Yu.V., Urazova, O.I., Novitskii, V.V., Voronkova, O.V., Mikheeva, K.O., Ignatov, M.V., et al., Byull. Sib. Med., 2012, no. 1, pp. 39–45.

  25. Lyadova, I.V. and Gergert, V.Ya., Tuberk. Bolezni Legk., 2009, no. 11, pp. 9–18.

  26. Perel'man, M.I., Natsional’noe rukovodstvo. Ftiziatriya (National Guidance. Phthisiology), Perel’man, M.I., Ed., Moscow: GEOTAR-Media, 2007.

  27. Report of the Expert Consultation on Immunotherapeutic Interventions for Tuberculosis, Geneva: World Health Organization, 2007.

  28. Lysov, A.V., Nikonov, S.D., Red’kin, Yu.V., Anfilof’eva, O.Yu., Kazakov, A.V., and Burkova, I.V., Terra Medica Nova, 2009, nos. 4–5, pp. 13–16.

  29. Appelberg, R., Clin. Exp. Immunol., 1992, vol. 89, pp. 120–125.

    Article  CAS  Google Scholar 

  30. Abadie, V., Badell, E., Douillard, P., Ensergueix, D., Leenen, P., Tanguy, M., et al., Blood, 2005, vol. 106, no. 5, pp. 1843–1850.

    Article  CAS  Google Scholar 

  31. Blomgran, R. and Ernst, J., J. Immunol., 2011, vol. 186, no. 12, pp. 7110–7119.

    Article  CAS  Google Scholar 

  32. Seiler, P., Aichele, P., Bandermann, S., Hauser, A., Lu, B., Gerard, N., et al., Eur. J. Immunol., 2003, vol. 33, no. 10, pp. 2676–2686.

    Article  CAS  Google Scholar 

  33. Elsbach, P. and Weiss, J., Immunol. Lett., 1985, vol. 11, pp. 159–163.

    Article  CAS  Google Scholar 

  34. Seiler, P., Aichele, P., Raupach, B., Odermatt, B., Steinhoff, U., and Kaufmann, S., J. Infect. Dis., 2000, vol. 181, pp. 671–680.

    Article  CAS  Google Scholar 

  35. Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., et al., Toxicol. Appl. Pharmacol., 2005, vol. 207, no. 3, pp. 221–231.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed as part of the industrial program of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kalmantaeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The contents and manipulations with animals were carried out in accordance with “Guidelines for the Maintenance and Use of Laboratory Animals” (Institute of Laboratory Animals Resources, Commission on Life Sciences, National Research Council. National Academy Press: Washington. 1996. 138 p.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmantaeva, O.V., Firstova, V.V., Grishchenko, N.S. et al. Antibacterial and Immunomodulating Activity of Silver Nanoparticles on Mice Experimental Tuberculosis Model. Appl Biochem Microbiol 56, 226–232 (2020). https://doi.org/10.1134/S0003683820020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020088

Keywords:

Navigation