Skip to main content
Log in

Mediator BOD Biosensor Based on Cells of Microorganisms Isolated from Activated Sludge

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Three bacterial strains (SPB1, SPB2, and SPB3) isolated from the activated sludge of treatment facilities most efficiently oxidized (as compared to other strains) a model solution based on glucose and glutamic acid in the presence of a ferrocene mediator. The possible use of isolated strains as a basis for a mediator-type amperometric BOD biosensor was studied. Analysis of 16S rRNA genes demonstrated that the SPB1, SPB2, and SPB3 strains are 99.79–100% similar to the Paracoccus yeei BAA-599T, Pseudomonas veronii DSM 11331T, and Bacillus proteolyticus TD42T strains, respectively. It was established that the bioreceptor element based on the P. yeei SPB1 strain possessed the best characteristics. It was stable in storage at 4°С for 22 days, and the lower limit of detectable concentrations was 1.3 mg О2/dm3. In order to search for the most efficient electron transfer mediator for this strain, nine compounds, including ferrocene, thionine, methylene blue, potassium hexacyanoferrate(III), and 2,6-dichlorophenolindophenol, were screened. The mediator electron transfer signals were obtained for each of them. Ferrocene was the most efficient in terms of sensitivity and the amount of substrate oxidation that can be registered in the presence of the mediator. An analysis of ten samples of wastewater (before and after purification) and the rivers of Tula oblast demonstrated that the use of ferrocene and P. yeei SPB1 strain cells made it possible to obtain data with a high correlation (R = 0.9934) with the results of the standard method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. ISO 5815-1:2003. Water Quality–Determination of Biochemical Oxygen Demand after N Days (BODn), Part 1: Dilution and Seeding Method with Allylthiourea Addition, Geneva: International Organization for Standardization, 2003.

  2. ISO 5815-2:2003. Water Quality–Determination of Biochemical Oxygen Demand after N Days (BODn), Part 2: Method for Undiluted Samples, Geneva: International Organization for Standardization, 2003.

  3. Jouanneau, S., Recoules, L., Durand, M.J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., and Thouand, G., Water Res., 2014, vol. 49, no. 1, pp. 62–82.

    Article  CAS  PubMed  Google Scholar 

  4. Karube, I., in Whole Cell Sensing Systems I: Reporter Cells and Devices, Belkin, S. and Gu, M.B., Eds., New York: Springer Healthcare, 2010.

    Google Scholar 

  5. Arlyapov, V., Kamanin, S., Ponamoreva, O., and Reshetilov, A., Enzyme Microb. Technol., 2012, vol. 50, no. 4, pp. 215–220.

    Article  CAS  PubMed  Google Scholar 

  6. Arlyapov, V.A., Yudina, N.Yu., Asulyan, L.D., Alferov, S.V., Alferov, V.A., and Reshetilov, A.N., Enzyme Microb. Technol., 2013, vol. 53, no. 4, pp. 257–262.

    Article  CAS  PubMed  Google Scholar 

  7. Modin, O. and Wilen, B.M., Water Res., 2012, vol. 46, no. 18, pp. 6113–6120.

    Article  CAS  PubMed  Google Scholar 

  8. Zaitseva, A.S., Arlyapov, V.A., Yudina, N.Yu., Alferov, S.V., and Reshetilov, A.N., Enzyme Microb. Technol., 2016, vol. 98, pp. 43–51.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, J., Gao, G., and Xia, S., Int. J. Electrochem. Sci., 2015, vol. 10, no. 11, pp. 9695–9705.

    CAS  Google Scholar 

  10. Hooi, K.B., Ismail, A.K., Ahamad, R., and Shahir, S., Electrochim. Acta, 2015, vol. 176, no. 11, pp. 777–783.

    Article  CAS  Google Scholar 

  11. Jordan, M.A., Welsh, D.T., and Teasdale, P.R., Talanta, 2014, vol. 125, no. 1, pp. 293–300.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, L., Bai, L., Yu, D., Zhai, J., and Dong, S., Talanta, 2015, vol. 138, no. 1, pp. 36–39.

    Article  CAS  PubMed  Google Scholar 

  13. Niyomdecha, S., Limbut, W., Numnuam, A., Asawatreratanakul, P., Kanatharana, P., and Thavarungkula, P., Sens. Actuators, 2017, vol. 241, no. 31, pp. 473–481.

    Article  CAS  Google Scholar 

  14. Kindaichi, T., Biotechnol. Bioeng., 2006, vol. 94, no. 6, pp. 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  15. Bonetto, M.C., Talanta, 2011, vol. T. 85, no. 1, pp. 455–462.

  16. Chen, C.Y., Tsai, T.H., Wu, P.S., Tsao, S.E., Huang, Y.S., and Chung, Y.C., J. Env. Sci./Health. Part A, 2018, vol. 53, no. 2, pp. 108–115.

    Article  CAS  Google Scholar 

  17. Kolahchi, N., Braiek, M., Ebrahimipour, G., Ranaei-Siadat, O., Lagarde, F., and Jaffrezic-Renault, N., J. Environ. Chem. Eng., 2018, vol. 6, no. 1, pp. 478–484.

    CAS  Google Scholar 

  18. Wilson, K., in Current Protocols in Molecular Biology, Ausubel, F.M., Ed., New York: Wiley, 1997.

    Google Scholar 

  19. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., and Seo, H., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 5, pp. 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Babkina, E., Chigrinova, E., Ponamoreva, O., Alferov, V., and Reshetilov, A., Electroanalysis, 2006, vol. 18, nos. 19–20, pp. 2023–2029.

    Article  CAS  Google Scholar 

  21. Ikeda, T., Kurosaki, T., Takayama, K., and Kano, K., Anal. Chem., 1996, vol. 68, no. 1, pp. 192–198.

    Article  CAS  PubMed  Google Scholar 

  22. Richardson, N.J., Gardner, S., and Rawson, D.M., J. Appl. Bacteriol., 1991, vol. 70, no. 5, pp. 422–426.

    Article  CAS  Google Scholar 

  23. Arlyapov, V.A., Nechaeva, I.A., Skvortsova, L.S., and Volkova, E.M., Water: Chem. Ecol., 2016, no. 6, pp. 9–21.

  24. Liu, L., Zhang, S., Xing, L., Zhao, H., and Dong, S., Talanta, 2012, vol. 93, no. 15, pp. 314–319.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 17-74-10078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Reshetilov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharkova, A.S., Arlyapov, V.A., Turovskaya, A.D. et al. Mediator BOD Biosensor Based on Cells of Microorganisms Isolated from Activated Sludge. Appl Biochem Microbiol 55, 189–197 (2019). https://doi.org/10.1134/S0003683819010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819010083

Keywords:

Navigation