Skip to main content
Log in

Cloning, Isolation, and Properties of a New Homologous Exoarabinase from the Penicillium canescens Fungus

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A novel exo-arabinase (GH93, exo-ABN) enzyme produced by the ascomycete Penicillium canescens has been studied. Cloning of the abn1 gene coding for exo-ABN into the recipient P. canescens strain RN3-11-7 yielded recombinant producing strains characterized by a high yield of extracellular exo- ABN production (20–30% of the total amount of extracellular protein). Chromatographic purification yielded a homogenous exo-ABN with a molecular weight of 47 kDa, as shown by SDS-PAGE. The enzyme showed high specific activity towards linear arabinan (117 U/mg) and low specific activity towards branched arabinan and arabinoxylan (4–5 U/mg) and para-nitrophenyl-α-L-arabinofuranoside (0.3 U/mg), whereas arabinogalactan and para-nitrophenyl-α-L-arabinopyranoside, the substrates that contained the pyranose form of arabinose, were not hydrolyzed. Arabinohexaose was the major product of linear arabinan hydrolysis. Exo-ABN had a pH optimum at 5.0 and a temperature optimum at 60°C. The enzyme was stable in a broad pH range (4.0–7.0) and upon heating to 50°C during 180 min. Extensive hydrolysis of linear and branched arabinans by exo- and endo-arabinase mixtures, arabinofuranosidase, and arabinofuran-arabinoxylan hydrolase has been performed. The degree of substrate conversion amounted to 67 and 83% of the maximal possible value, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakamoto, T. and Thibault, J.F., Appl. Environ. Microbiol., 2001, vol. 67, pp. 3319–3321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Proctor, M.R., Taylor, E.J., Nurizzo, D., Turkenburg, J.P., Lloyd, R.M., Vardakou, M., Davies, G.J., and Gilbert, H.J., Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 2697–2702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. McKie, V.A., Black, G.W., and Willward-Sadler, S.J., Biochem. J., 1997, vol. 323, pp. 547–555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wong, D.W.S., Chan, V.J., and Batt, S.B., Appl. Microbiol. Biotechnol., 2008, vol. 79, pp. 941–950.

    Article  PubMed  CAS  Google Scholar 

  5. Kuhnel, S., Hinz, S.W.A., Pouvreau, L., Wery, J., Schools, H.A., and Gruppen, H., Biores. Technol., 2010, vol. 101, pp. 8300–8307.

    Article  CAS  Google Scholar 

  6. Kaji, A. and Shimokawa, K., Agric. Biol. Chem., 1984, vol. 48, pp. 67–72.

    CAS  Google Scholar 

  7. Whitaker, J.R., Voragen, A.G., and Wong, D.W.S., Handbook of Food Enzymology, New York; Basel: Marcel Dekker, 2003.

    Google Scholar 

  8. Hemicellulose and Hemicellulases, Coughlan, M.P. and Hazlewood, G.P., Eds., London and Chapel Hill: Portland Press Research Monograph, 1993.

  9. Rubtsova, E.A., Bushina, E.V., Rozhkova, A.M., Korotkova, O.G., Nemashkalov, V.A., Koshelev, A.V., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 5, pp. 591–599.

    Article  CAS  Google Scholar 

  10. Matys, V.Yu., Bubnova, T.V., Koshelev, A.V., Vel’kov, V.V., Okunev, O.N., Bravova, G.B., Shishkova, E.A., Semenova, M.V., and Sinitsyn, A.P., in Mikrobnye biokatalizatory i perspektivy razvitiya fermentnykh tekhnologii v pererabatyvayushchikh otraslyakh APK (Microbial Biocatalysts and Prospects for the Development of Enzyme Technologies in the Processing Industries of the Agro-Industrial Complex), Moscow: Pishchepromizdat, 2004.

    Google Scholar 

  11. Sinitsyna, O.A., Bukhtoyarov, F.E., Gusakov, A.V., Okunev, O.N., Bekkarevich, A.O., Vinetskii, Yu.P., and Sinitsyn, A.P., Biochemistry (Moscow), 2003, vol. 68, no. 11, pp. 1200–1209.

    Article  CAS  Google Scholar 

  12. Sinitsyn, A.P. and Rozhkova, A.M., Penicillium canescens Host as a Platform for Development of a New Recombinant Strain Producers of Carbohydrases, Microbiology Monographs, Berlin, Heidelberg: Springer-Verlag, 2015.

    Google Scholar 

  13. Sanger, F., Nicklen, S., and Chase, A.R., Proc. Natl. Acid. Sci. U.S.A., 1977, vol. 74, no. 12, pp. 5463–5467.

    Article  CAS  Google Scholar 

  14. Aleksenko, A., Makarova, N., Nikolaev, I., and Clutterbuck, A., Curr. Genet., 1995, vol. 28, pp. 474–478.

    Article  PubMed  CAS  Google Scholar 

  15. Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Metody izucheniya i svoistva tsellyuloliticheskikh fermentov (Methods of Study and Properties of Cellulolytic Enzymes), Itogi nauki i tekhniki, Ser. Biotekhnol., Moscow: VINITI, 1990, vol. 25, p. 148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Semenova.

Additional information

Original Russian Text © M.V. Semenova, P.V. Volkov, A.M. Rozhkova, I.N. Zorov, A.P. Sinitsyn, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, M.V., Volkov, P.V., Rozhkova, A.M. et al. Cloning, Isolation, and Properties of a New Homologous Exoarabinase from the Penicillium canescens Fungus. Appl Biochem Microbiol 54, 387–395 (2018). https://doi.org/10.1134/S0003683818040130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818040130

Keywords

Navigation