Skip to main content
Log in

Autoclaved mycelium induces efficiently the production of hydrolytic enzymes for protoplast preparation of autologous fungus

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The production of hydrolytic enzymes by the mutant Trichoderma reesei Rut-C30 when cultivated in the presence of various carbon sources: glucose, wheat bran and autoclaved mycelium of Penicillium occitanis CT1 has been studied. Glucose was shown to repress all studied hydrolases, 3% of either wheat bran or autoclaved cell walls led to high titers of enzymes, and were favorably comparable to commercial lysing enzymes (LE). The lysing enzyme cocktail obtained when T. reesei Rut-C30 was cultivated in the presence of autoclaved P. occitanis CT1 mycelia appeared to be a most effective for P. occitanis CT1 protoplast formation. Maximal yield of protoplasts reached 13 × 106 protoplasts/mL while commercial LE preparation released only 4 × 106 protoplasts/mL. The protoplast yield was affected also by the osmotic stabilizer, with KCl giving the best results. Our results suggest that to achieve the best protoplastization rate, the enzyme preparation should be obtained following induction by the autoclaved mycelium of the autologous fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fontaine, T., Simenel, C., Dubreucq, G., Adam, O., Delepierre, M., Lemoine, J., et al., J. Biol. Chem., 2000, vol. 275, no. 36, pp. 27594–27607.

    CAS  PubMed  Google Scholar 

  2. Pessoni, R.A.B., Freshour, G., Figueiredo-Ribeiro, R.C.L., Hahn, M.G., and Braga, M.R., Mycologia, 2005, vol. 97, no. 2, pp. 304–311.

    Article  CAS  PubMed  Google Scholar 

  3. Leal, J. A., Gomez-Miranda, B., Prieto, A., Domenech, J., Ahrazem, O., and Bernabe, M., Mycol. Res., 1997, vol. 101, no. 10, pp. 1259–1264.

    Article  CAS  Google Scholar 

  4. Santos, A., Marquina, D., Leal, J.A., and Peinado, J.M., Appl. Environ. Microbiol., 2000, vol. 66, no. 5, pp.1809–1813.

    Google Scholar 

  5. Saloheimo, A., Henrissat, B., Hoffrén, A.M., Teleman, O., and Penttilä, M., Mol. Microbiol., 1994, vol. 13, no. 2, pp. 219–228.

    Article  CAS  PubMed  Google Scholar 

  6. Kubicek, C.P., Messner, R., Gruber, F., Mach, R.L., and Kubicek-Pranz, E.M., Enzyme Microb. Tech., 1992, vol. 15, no. 2, pp. 90–99.

    Article  Google Scholar 

  7. Lynd, L., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., et al., Genome Biol., 2011, vol. 12, no. 4, p. R40.

    Google Scholar 

  9. Gruber, S G. and Seidl-Seiboth, V., Microbiology, 2012, vol. 158, no. 1, pp. 26–34.

    Article  CAS  PubMed  Google Scholar 

  10. Kakoniova, D., Labudova I., and Liskova, D., Biotechnol. Lett., 1987, vol. 9, no. 10, pp. 721–724.

    Article  CAS  Google Scholar 

  11. Cocking, E.C., Nature, 1979, vol. 281, no. 5728, pp. 180–181.

    Article  Google Scholar 

  12. Eveleigh, D.E. and Montenecourt, B.S., Adv. Appl. Microbiol., 1979, vol. 25, pt. 1, pp. 57–74.

    Article  CAS  PubMed  Google Scholar 

  13. Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdallah, F., and Gargouri, A., Enzyme Microb. Technol., 2002, vol. 30, no. 5, pp. 662–666.

    Article  CAS  Google Scholar 

  14. Mandels M., Weber J., and Parizek R., Appl Microbiol. 1971, vol. 21, no. 1, pp. 152–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428.

    Article  CAS  Google Scholar 

  16. Saibi, W., Abdeljalil, S., and Gargouri, A., World J. Microb. Biot., 2011, vol. 27, no. 8, pp. 1765–1774.

    Article  CAS  Google Scholar 

  17. Cottrell, M. T., Wood, D. N., Yu, J. and Kirchman, D. L., Appl Environ. Microb., 2002, vol. 66, no. 10, pp. 1195–1201.

    Google Scholar 

  18. Bradford, M. M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. and Favre, M., J. Mol. Biol., 1973, vol. 80, no.4, pp. 575–592.

    Article  CAS  PubMed  Google Scholar 

  20. De Vries, O.M.H. and Wessels, J.G.H., J. Gen. Microbiol., 1973, vol. 76, no. 1, pp. 319–330.

    Article  PubMed  Google Scholar 

  21. Lora, J.M., De la Cruz, J., Llobell, A., Benitez, T., and Pintor-Toro, J.A., Mol. Gen. Genet., 1995, vol. 274, no. 5, pp. 639–645.

    Article  Google Scholar 

  22. Yang, H.H., Yang, S.L., Peng, K.C., and Liu, S.Y., Mycol. Res., 2009, vol. 113, pt. 9, pp. 924–932.

    Article  CAS  PubMed  Google Scholar 

  23. Abdeljalil, S., Ben Hmad, I., Saibi, W., Amouri, B., Maalej, W., Kaaniche, M., Appl. Biochem. Biotechnol., 2014, vol. 172, no. 3, pp. 1599–1611.

    Article  CAS  PubMed  Google Scholar 

  24. Hamlyn, P.F., Bradshaw, R.E., Mellon, F.M., Santiago, C.M., Wilson, J.M., and Peberdy, J.F., Enzyme Microb. Technol., 1981, vol. 3, no. 4, pp. 321–325.

    Article  CAS  Google Scholar 

  25. Peberdy J.F., Fungal Protoplasts, Applications in Biochemistry and Genetics, Peberdy, J.F. and Ferenczy, L., Eds., New York: CRC Press, 1985, pp. 45–71.

  26. Kumari, D.L., Ind. Phytopathol., 1996, vol. 49, no. 3, pp. 199–212.

    Google Scholar 

  27. Zhou X., Wei Y., Zhu H., Wang Z., Lin J., Liu L. and Tang K., Afr. J. Biotechnol., 2008, vol. 7, no. 12, pp. 2017–2024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gargouri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloulou-Abdelkefi, M., Trigui-Lahiani, H. & Gargouri, A. Autoclaved mycelium induces efficiently the production of hydrolytic enzymes for protoplast preparation of autologous fungus. Appl Biochem Microbiol 53, 230–236 (2017). https://doi.org/10.1134/S000368381702003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381702003X

Keywords

Navigation