Skip to main content
Log in

Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Changes in the content of the furostanol glycosides protodioscin and deltoside, particularly that of the (25S)-isomers of the glycosides, during suspension cultivation of different lines of Nepal yam (Dioscorea deltoidea Wall.) cells of the strain IFR-DM-0.5 has been investigated. The composition of furostanol glycosides has been characterized, and the dynamics of the accumulation of individual glycosides during lengthy subcultivation of cells maintained in flasks or in a barbotage bioreactor has been analyzed. A positive correlation between the growth and accumulation of substances that belonged to the class of furostanol glycosides has been demonstrated for cultured dioscorea cells, whereas the content of some of the individual glycosides varied considerably between the lines of the strain, cultures maintained under different conditions, and even between cells in different phases of the growth cycle. The increased content of (25R)-forms of the glycosides (protodioscin and deltoside) was correlated with a decrease in the cellular growth rate, whereas an increase in culture growth intensity occurred concomitantly to an increase of the amount of (25S)-isomers. This may be indicative of the specific stimulatory effect of (25S)-glycosides, but not the (25R)-forms, on cell proliferation in vitro. Thus, the concentration of (25S)-forms may increase due to the autoselection of cells capable of intensive division during prolonged cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nosov, A.M., Popova, E.V., and Kochkin, D.V., Production of Biomass and Bioactive Compounds Using Bioreactor Technology, Paek, K.-Y., Murthy, H.N., and Zhong, J.-J., Eds., Netherlands: Springer, 2014, pp. 563–623.

  2. Vasil’eva, I.S. and Paseshnichenko, V.A., Usp. Biol. Khim., 2000, vol. 40, pp. 153–204.

    Google Scholar 

  3. Karanova, S.L., Shamina, Z.B., and Rappoport, I.A., Genetika, 1975, vol. 11, no. 1, pp. 35–40.

    CAS  Google Scholar 

  4. Butenko, R.G., Popov, A.S., Volkova, L.A., Chernyak, N.D., and Nosov, A.M., Plant Sci. Lett., 1984, vol. 33, no. 3, pp. 285–292.

    Article  CAS  Google Scholar 

  5. Nosov, A.M., Paukov, V.N., and Butenko, R.G., Prikl. Biokhim. Mikrobiol., 1984, vol. 20, no. 1, pp. 125–129.

    Google Scholar 

  6. Titova, M.V., Shumilo, N.A., Kulichenko, I.E., Korostelev, V.V., Oreshnikov, A.V., and Nosov, A.M., Biotekhnologiya, 2006, no. 2, pp. 28–31.

    Google Scholar 

  7. Tarakanova, G.A., Paseshnichenko, V.A., Gudskov, N.L., and Butenko, R.G., Prikl. Biokhim. Mikrobiol., 1979, vol. 15, no. 1, pp. 106–111.

    CAS  Google Scholar 

  8. Butenko, R.G., Vorob’ev, A.S., and Nosov, A.M., Fiziol. Rast., 1992, vol. 39, no. 6, pp. 1146–1154.

    CAS  Google Scholar 

  9. Oreshnikov, A.V., Manakov, M.N., and Nosov, A.M., Fiziol. Rast., 1994, vol. 41, no. 6, pp. 518–528.

    Google Scholar 

  10. Kandarakov, O.F., Vorob’ev, A.S., and Nosov, A.M., Fiziol. Rast., 1994, vol. 41, no. 6, pp. 913–917.

    CAS  Google Scholar 

  11. Murashige, T. and Skoog, F., Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–476.

    Article  CAS  Google Scholar 

  12. Kaul, B. and Staba, J., Lloydia, 1968, vol. 31, no. 2, pp. 171–179.

    CAS  Google Scholar 

  13. Kochkin, D.V., Khandy, M.T., Zaitsev, G.P., Tolkacheva, N.V., Shashkov, A.S., Titova, M.V., Chirva, V.Ya., and Nosov, A.M., Khim. Prir. Soedin., 2016, no. 4, pp. 572–576.

    Google Scholar 

  14. Titova, M.V., Shumilo, N.A., Kulichenko, I.E., Ivanov, I.M., Sukhanova, E.S., and Nosov, A.M., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 557–563.

    Article  CAS  Google Scholar 

  15. Lambert, E., Faizal, A., and Geelen, D., Appl. Biochem. Biotechnol., 2011, vol. 164, no. 2, pp. 220–237.

    Article  CAS  PubMed  Google Scholar 

  16. Vasil’eva, I.S., Paseshnichenko, V.A., Urmantseva, V.V., Nosov, A.M., Chkheidze, E.G., and Bezzubov, A.A., Biokhimiya, 1990, vol. 55, no. 3, pp. 564–570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. Khandy or A. M. Nosov.

Additional information

Original Russian Text © M.T. Khandy, M.V. Titova, S.V. Konstantinova, D.V. Kochkin, I.M. Ivanov, A.M. Nosov, 2016, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2016, Vol. 52, No. 6, pp. 614–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandy, M.T., Titova, M.V., Konstantinova, S.V. et al. Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells. Appl Biochem Microbiol 52, 657–662 (2016). https://doi.org/10.1134/S0003683816060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816060077

Keywords

Navigation