Skip to main content
Log in

Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This study presents a metabolite profile analysis of unicellular green alga Chlamydomonas reinhardtii grown under autotrophic conditions at late stages of culture development. Metabolites were identified by gas chromatography coupled to mass spectrometry. Approximately 400 peaks corresponding to individual compounds were distinguished, of which approximately 100 compounds (including saccharides, fatty acids, aromatic compounds, amino acids, alcohols, etc.) were identified. A local database of mass spectra of unidentified compounds was created using MassBank software. Mapping of the metabolomic data with the use of the ChlamyCyc service showed that the identified compounds are involved in various energetic, synthetic, and signaling pathways in Chlamydomonas. The mapping of metabolites by their chemical structure with the use of Cytoscape software, combined with quantitative interpretation, showed that the majority of organic matter was concentrated primarily in the carbon backbones of fatty acids and terpenes, as well as saccharides and structurally similar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalaby, E., Plant Signal. Behav., 2011, vol. 6, no. 9, pp. D. 1338–1350.

    Article  Google Scholar 

  2. Rupprecht, J., J. Biotechnol., 2009, vol. 142, no. 1 P, pp. 10–20.

    Article  CAS  PubMed  Google Scholar 

  3. Grossman, A.R., Lohr, M., and Im, C.S., Annu Rev. Genet., 2004, vol. 38, pp. 119–173.

    Article  CAS  PubMed  Google Scholar 

  4. Boelling, C. and Fiehn, O., Plant Physiol., 2005, vol. 139, no. 4, pp. 1995–2005.

    Article  CAS  Google Scholar 

  5. Valledor, L., Furuhashi, T., Hanak, A.M., and Weckwerth, W., Mol Cell Proteomics, 2013, vol. 12, no. 8, pp. 2032–2047.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ide, T., Owa, M., King, S.M., Kamiya, R., and Wakabayashi, K., FEBS Lett., 2013, vol. 587, no. 14, pp. 2143–2149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Imam, S.H., Buchanan, M.J., Shin, H.C., and Snell, W.J., J. Cell Biol., 1985, vol. 101, no. 4, pp. 1599–1607.

    Article  CAS  PubMed  Google Scholar 

  8. Johanningmeier, U. and Fischer, D., Adv. Exp. Med. Biol., 2011, vol. 698, pp. 144–151.

    Article  Google Scholar 

  9. Weckwerth, W., Loureiro, M.E., Wenzel, K., and Fiehn, O., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 20, pp. 7809–7814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Arbona, V., Manzi, M., de Ollas, C., and Gomez-Cadenas, A., Int. J. Mol. Sci., 2013, vol. 14, no. 3, pp. 4885–4911.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hennig, L., Trends Plant Sci., 2007, vol. 12, no. 7, pp. 287–293.

    Article  CAS  PubMed  Google Scholar 

  12. Song, H., Peng, J.S., Yao, D.S., Liu, D.L., Yang, Z.L., Du, Y.P., and Xiang, J., Chinese Med. J., 2012, vol. 125, no. 5, pp. 757–763.

    CAS  Google Scholar 

  13. Foyer, C.H., Parry, M., and Noctor, G., J. Exp. Bot., 2003, vol. 54, no. 382, pp. 585–593.

    Article  CAS  PubMed  Google Scholar 

  14. Grossman, A.R., Catalanotti, C., Yang, W., Dubini, A., Magneschi, L., Subramanian, V., Posewitz, M.C., and Seibert, M., New Phytol., 2011, vol. 190, no. 2, pp. 279–288.

    Article  CAS  PubMed  Google Scholar 

  15. Renberg, L., Johansson, A.I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J.A., Gardestrom, P., Moritz, T., and Samuelsson, G.A., Plant Physiol., 2010, vol. 154, no. 1, pp. 187–196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Park, J.J., Barupal, D.K., and Fiehn, O., Mol. Cell. Proteomics, 2012, vol. 11, no. 10, pp. 973–988.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mashego, M.R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., and Heijnen, J.J., Biotechnol. Lett., 2007, vol. 29, no. 1, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  18. Hiller, J., Franco-Lara, E., and Weuster-Botz, D., Biotechnol. Lett., 2007, vol. 29, no. 8 P, pp. 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  19. Park, C., Yun, S., Lee, S.Y., Park, K., and Lee, J., Appl. Biochem. Biotechnol., 2012, vol. 167, no. 3, pp. 425–438.

    Article  CAS  PubMed  Google Scholar 

  20. Faijes, M., Mars, A.E., and Smid, E.J., Microb. Cell. Fact., 2007, vol. 6, no. 3, p. 27. doi: 10.1186/14752859-6-27.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kim, S., Lee do Y., Wohlgemuth, G., Park, H.S., Fiehn, O., and Kim, K.H., Anal. Chem., 2013, vol. 85, no. 4, pp. 2169–2176.

    Article  CAS  PubMed  Google Scholar 

  22. Tredwell, G.D., Edwards-Jones, B., Leak, D.J., and Bundy, J.G., PLoS One, 2011, vol. 6, no. 1. doi:10.1371/journal.pone.0016286

    Google Scholar 

  23. Lee, D.Y. and Fiehn, O., Plant Methods, 2008, vol. 4, no. 1, p. 7. doi:10.1186/1746-4811-4-7

    Article  CAS  PubMed Central  Google Scholar 

  24. Jernejc, K., Acta Chim. Slov., 2004, vol. 51, no. 3, p. 567.

    CAS  Google Scholar 

  25. Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., and Nielsen, J., Yeast, 2005, vol. 22, no. 14, pp. 1155–1169.

    Article  CAS  PubMed  Google Scholar 

  26. Ito, T., Tanaka, M., Shinkawa, H., Nakada, T., Ano, Y., Kurano, N., Soga, T., and Tomita, M., Metabolomics, 2013, vol. 9, no. 1, pp. 178–187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Feng, X., Liu, X., Luo, Q., and Liu, B.F., Mass. Spectrom. Rev., 2008, vol. 27, no. 6, pp. 635–660.

    Article  PubMed  Google Scholar 

  28. Millan, P.P., Methods Mol. Biol., 2013, vol. 1021, pp. 63–88.

    Article  PubMed  Google Scholar 

  29. Gorman, D.S. and Levine, R.P., Proc. Natl. Acad. Sci. USA, 1965, vol. 54, no. 6, pp. 1665–1669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kohl, M., Wiese, S., and Warscheid, B., Methods Mol. Biol., 2011, vol. 696, pp. 291–303.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S., Yun, E.J., Hossain, M.A., Lee, H., and Kim, K.H., Anal. Bioanal. Chem., 2012, vol. 404, no. 2, pp. 553–562.

    Article  CAS  PubMed  Google Scholar 

  32. Husic, H.D. and Tolbert, N.E., Plant Physiol., 1985, vol. 82, no. 2, pp. 594–596.

    Article  Google Scholar 

  33. Fernie, A.R., Carrari, F., and Sweetlove, L.J., Curr. Opin. Plant. Biol., 2004, vol. 7, no. 3, pp. 254–261.

    Article  CAS  PubMed  Google Scholar 

  34. Choi, K.J., Nakhost, Z., Krukonis, V.J., and Karel, M., Food Biotechnol., 1987, vol. 1, no. 2, pp. 263–281.

    Article  CAS  PubMed  Google Scholar 

  35. Burg, M.B. and Ferraris, J.D., J. Biol. Chem., 2008, vol. 283, no. 12, pp. 7309–7313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Theiss, C., Bohley, P., Bisswanger, H., and Voigt, J., J. Plant. Physiol., 2004, vol. 161, no. 1, pp. 3–14.

    Article  CAS  PubMed  Google Scholar 

  37. Maeda, H. and Dudareva, N., Annu. Rev. Plant. Biol., 2012, vol. 63, pp. 73–105.

    Article  CAS  PubMed  Google Scholar 

  38. Babu, B. and Wu, J.T., Sci. Total. Environ., 2010, vol. 408, no. 21, pp. 4969–4975.

    Article  CAS  PubMed  Google Scholar 

  39. Sakihama, Y., Cohen, M.F., Grace, S.C., and Yamasaki, H., Toxicology, 2002, vol. 177, no. 1, pp. 67–80.

    Article  CAS  PubMed  Google Scholar 

  40. Kruk, J. and Trebst, A., Biochim. Biophys. Acta, 2008, vol. 1777, no. 2, pp. 154–162.

    Article  CAS  PubMed  Google Scholar 

  41. Munne-Bosch, S., Vitam. Horm., 2007, vol. 76, pp. 375–392.

    Article  CAS  PubMed  Google Scholar 

  42. Brumfield, K.M., Moroney, J.V., Moore, T.S., Simms, T.A., and Donze, D., PLoS One, 2010, vol. 5, no. 1, pp. 2227–2230.

    Article  Google Scholar 

  43. Willett, P., Barnard, J.M., and Downs, G.M., J. Chem. Inf. Comput. Sci., 1998, vol. 38, no. 6, pp. 983–996.

    Article  CAS  Google Scholar 

  44. Poerschmann, J., Spijkerman, E., and Langer, U., Microb. Ecol., 2004, vol. 48, no. 1, pp. 78–89.

    Article  CAS  PubMed  Google Scholar 

  45. An, M., Mou, S., Zhang, X., Zheng, Z., Ye, N., Wang, D., Zhang, W., and Miao, J., Biores. Technol., 2013, vol. 149, pp. 77–83.

    Article  CAS  Google Scholar 

  46. Bafana, A., Carbohydr. Res., 2013, vol. 95, no. 2, pp. 746–752.

    Article  CAS  Google Scholar 

  47. Toguri, T., Muto, S., and Miyachi, S., Eur. J. Biochem., 1986, vol. 158, no. 3, pp. 443–450.

    Article  CAS  PubMed  Google Scholar 

  48. Niittyla, T., Messerli, G., Trevisan, M., Chen, J., Smith, A.M., and Zeeman, S.C., Science, 2004, vol. 303, no. 5664, pp. 87–89.

    Article  PubMed  Google Scholar 

  49. Rowland, O. and Domergue, F., Plant Sci., 2012, vol. 193–194, pp. 28–38.

    Article  PubMed  Google Scholar 

  50. Johnson, X. and Alric, J., Eukaryot. Cell, 2013, vol. 12, no. 6, pp. 776–793.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gillaspy, G.E., New Phytol., 2011, vol. 192, no. 4, pp. 823–839.

    Article  CAS  PubMed  Google Scholar 

  52. Gustavs, L., Eggert, A., Michalik, D., and Karsten, U., Protoplasma, 2010, vol. 243, nos. 1–4, pp. 3–14.

    Article  CAS  PubMed  Google Scholar 

  53. Miller, D.H., Mellman, I.S., Lamport, D.T., and Miller, M., J. Cell Biol., 1974, vol. 63, no. 2, pp. 420–429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Peterhansel, C. and Maurino, V.G., Plant Physiol., 2011, vol. 155, no. 1, pp. 49–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Marek, L.F. and Spalding, M.H., Plant Physiol., 1991, vol. 97, no. 1, pp. 420–425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chen, Z.Y., Burow, M.D., Mason, C.B., and Moroney, J.V., Plant Physiol., 1996, vol. 112, no. 2, pp. 677–684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Shishova, M.F., Tankelyun, O.V., Emel’yanov, V.V., and Polevoi, V.V., Retseptsiya i transduktsiya signalov u rastenii (Reception and Signal Transduction in Plants), St. Petersburg: Izd. SPbGU, 2008.

    Google Scholar 

  58. Goyal, A. and Tolbert, N.E., Plant Physiol., 1989, vol. 89, no. 3, pp. 958–962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Eckhardt, U., Grimm, B., and Hortensteiner, S., Plant. Mol. Biol., 2004, vol. 56, no. 1, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  60. Grossman, A., Protistology, 2000, vol. 151, no. 3, pp. 201–224.

    Article  CAS  Google Scholar 

  61. Aniszewski, T., Alkaloids—Secrets of Life, Aklaloid Chemistry, Biological Significance, Applications and Ecological Role, Amsterdam: Elsevier, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Puzanskiy.

Additional information

Original Russian Text © R.K. Puzanskiy, A.L. Shavarda, E.R. Tarakhovskaya, M.F. Shishova, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 1, pp. 73–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzanskiy, R.K., Shavarda, A.L., Tarakhovskaya, E.R. et al. Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions. Appl Biochem Microbiol 51, 83–94 (2015). https://doi.org/10.1134/S0003683815010135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815010135

Keywords

Navigation