Skip to main content
Log in

Heterotrophic Bacteria of the Ob River Estuary during Growing Season: Spatial and Temporal Variability

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Analysis of the distribution of abundance and activity of bacterioplankton in the estuary area of the Ob River in July 2016 and September 2013, as well as environmental factors, made it possible to distinguish between riverine, brackish water, and marine zones. In summer, the abundance of bacterioplankton varied from 2604 ± 436 × 103 cells/mL in brackish waters to 468 ± 91 × 103 cells/mL in seawater. The average values of bacterial production in waters with a salinity of less than 8 and more than 22 PSU were 17.43 and 4.91 mgC m–3 day–1, respectively. In autumn, the bacterial abundance decreased towards the sea from 1289 ± 385 × 103 cells/mL in freshwaters to 85 ± 37 × 103 cells/mL in the offshore part; the value of production decreased by more than an order of magnitude. With an increase in salinity, the proportion of cells with active electron transport chain in the abundance of bacterioplankton decreased from 5.8 to 0.6%. Thus, the distribution of river runoff, marked by salinity, proved to be the main factor affecting the spatial distribution and activity of bacterioplankton. However, the mechanism of such regulation remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. V. Artamonova, S. A. Lapin, O. N. Luk’yanova, et al. “The features of the hydrochemical regime in Ob’ inlet during the open water time,” Oceanology 53, 317–326 (2013).https://doi.org/10.7868/S0030157413030027

    Article  Google Scholar 

  2. A. D. Dobrovol’skii and B. S. Zalogin, USSR Seas (Mosk. Gos. Univ., 1982) [in Russian].

    Google Scholar 

  3. A. V. Drits, A. B. Nikishina, T. N. Semenova, et al. “Spatial distribution and feeding of dominant zooplankton species in the Ob River estuary,” Oceanology 56, 382–394 (2016).https://doi.org/10.7868/S0030157416030047

    Article  Google Scholar 

  4. A. I. Kopylov, A. F. Sazhin, E. A. Zabotkina, et al. “Virio- and bacterioplankton in the estuary zone of the Ob’ River and adjacent regions of the Kara Sea shelf,” Oceanology 57, 105–113 (2017).https://doi.org/10.7868/S0030157417010051

    Article  Google Scholar 

  5. S. A. Lapin, Candidate’s Dissertation in Geography (Moscow, 2012).

  6. A. P. Lisitsyn, “Marginal filter of oceans,” Okeanologiya 34, 735–747 (1994).

    Google Scholar 

  7. V. N. Mikhailov, Issues of the Rivers of Russia and Adjacent Countries: the Past, the Present, and the Future (GEOS, Moscow, 1997) [in Russian].

    Google Scholar 

  8. I. N. Mitskevich and B. B. Namsaraev, “Number and distribution of bacterial plankton in the Kara Sea in September 1993,” Okeanologiya 34, 704–708 (1994).

    Google Scholar 

  9. I. V. Mosharova, V. V. Il’inskii, and S. A. Mosharov, “The state of the heterotrophic bacterial plankton in the estuary of the river of Yenisei and the region of the Ob’-Yenisei fluvial efflux in autumn period in relation to the environmental factors,” Vodnye Resursy 43, 202–215 (2016).https://doi.org/10.7868/S0321059616020097

    Article  Google Scholar 

  10. M. A. Pavlova, P. R. Makarevich, and T. I. Shirokolobova, “Communities of bacteria and viruses in the waters of Ob’ and Taz guba,” Dokl. RAN 471, 503–507 (2016).https://doi.org/10.7868/S0869565216340284

    Article  Google Scholar 

  11. N. D. Romanova, Candidate’s Dissertation in Biology (Moscow, 2012).

  12. N. D. Romanova and A. F. Sazhin, “Relationships between the cell volume and the carbon content of bacteria,” Oceanology 50, 522–530 (2010).

    Article  Google Scholar 

  13. N. D. Romanova and A. F. Sazhin,” Bacterioplankton of the Kara Sea shelf,” Oceanology 55, 858–862 (2015).https://doi.org/10.7868/S0030157415060179

    Article  Google Scholar 

  14. A. S. Savvichev, E. E. Zakharova, E. F. Veslopolova, et al., “Microbial processes of the carbon and sulfur cycles in the Kara Sea,” Oceanology 50, 893–908 (2010).

    Article  Google Scholar 

  15. P. A. Stunzhas and P. N. Makkaveev, “Volume of the Ob’ Bay waters as a factor of the formation of the hydrochemical inhomogeneity,” Oceanology 54, 583–595 (2014).https://doi.org/10.7868/S0030157414050128

    Article  Google Scholar 

  16. I. N. Sukhanova, M. V. Flint, E. G. Sakharova, et al., “Phytocenoses of the Ob’ Estuary and Kara Sea Shelf in the Late Spring Season,” Oceanology 58, 802–816 (2018).https://doi.org/10.1134/S003015741806014X

    Article  Google Scholar 

  17. N. G. Teplinskaya, “Bacterial transformation of the compounds of nitrogen, carbon, sulfur, and phosphorus in sub-Antarctic seabed sediments,” Ekologicheskaya Bezopasnost’ Pribrezhnoi i Shel’fovoi Zon 15, 581–589 (2007).

    Google Scholar 

  18. M. V. Flint, A. G. Zatsepin, N. V. Kucheruk, et al. “Multidisciplinary studies of the ecosystem of the Kara Sea: Cruise 54 of R/V Akademik Mstislav Keldysh,” Oceanology 48, 883–887 (2008).

    Article  Google Scholar 

  19. M. V. Flint, Report on Sea Expeditions of the Research Vessel ‘Professor Shtokman’, 125th Research Trip (Ross. Akad. Nauk, Moscow, 2013) [in Russian].

    Google Scholar 

  20. M. V. Flint, I. M. Anisimov, E. G. Arashkevich, et al. Ecosystems of the Kara Sea and Laptev Sea: Field Research (2016 and 2018) (Shirshov Institute of Oceanology, Moscow, 2021) [in Russian].

    Google Scholar 

  21. G. V. Alekseev, N. I. Glok, A. E. Vyazilova, and N. E. Kharlanenkova, “2020. Climate change in the Arctic: causes and mechanisms,” IOP Conf. Ser.: Earth and Environmental Sci. 606, 012002.https://doi.org/10.1088/1755-1315/606/1/012002

  22. A. B. Demidov, V. I. Gagarin, O. V. Vorobieva, et al., “Spatial and vertical variability of primary production in the Kara Sea in July and August 2016: the influence of the river plume and subsurface chlorophyll maxima,” Polar Biology 41, 563–578 (2018).https://doi.org/10.1007/s00300-017-2217-x

    Article  Google Scholar 

  23. T. Dittmar and G. Kattner, “The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review,” Mar. Chem. 83 103–20 (2003).https://doi.org/10.1016/S0304-4203(03)00105-1

    Article  Google Scholar 

  24. T. Fenchel, “The microbial loop–25 years later,” J. Exp. Marine Biol. Ecol. 366, 99–103 (2008).https://doi.org/10.1016/j.jembe.2008.07.013

    Article  Google Scholar 

  25. V. V. Gordeev, “River Input of Water, Sediment, Major Ions, Nutrients and Trace Metals from Russian Territory to the Arctic Ocean,” in The Freshwater Budget of the Arctic Ocean (Springer, Dordrecht, 2000).

    Google Scholar 

  26. K. Gundersen, G. Bratbak, and M. Heldal, “Factors influencing the loss of bacteria in preserved seawater samples,” Marine Ecology Prog. Ser. 137, 305–310 (1996).https://doi.org/10.3354/meps137305

    Article  Google Scholar 

  27. R. M. Holmes, J. W. McClelland, P. A. Raymond, et al., “Lability of DOC transported by Alaskan rivers to the Arctic Ocean,” Geophys. Res. Lett. 35, 5 (2008).https://doi.org/10.1029/2007GL032837

    Article  Google Scholar 

  28. E. Kamiya, S. Izumiyama, M. Nishimura, et al., “Effects of fixation and storage on flow cytometric analysis of marine bacteria,” J. Oceanology 63, 101–112 (2007).https://doi.org/10.1007/s10872-007-0008-7

    Article  Google Scholar 

  29. D. L. Kirchman, R. R. Malmstrom, and M. T. Cottrell, “Control of bacterial growth by temperature and organic matter in the Western Arctic,” Deep-Sea Res. Part II: Topical Studies in Oceanography 52, 3386–3395 (2005).https://doi.org/10.1016/j.dsr2.2005.09.005

    Article  Google Scholar 

  30. P. Lebaron, P. Servais, A. C. Baudoux, et al., “Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry,” Aquatic Microbial Ecol. 28, 131–140 (2002).https://doi.org/10.3354/ame028131

    Article  Google Scholar 

  31. J. W. McClelland, R. M. Holmes, K. H. Dunton, and R. W. Macdonald, “The Arctic Ocean estuary,” Estuaries and Coasts 35, 353–368 (2011).https://doi.org/10.1007/s12237-010-9357-3

    Article  Google Scholar 

  32. B. Meon and R. M. W. Amon, “heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea,” Aquatic Microbial Ecol. 37, 121–135 (2004).https://doi.org/10.3354/ame037121

    Article  Google Scholar 

  33. A. A. Osadchiev, A. S. Izhitskiy, P. O. Zavialov, et al., “Structure of the buoyant plume formed by Ob and Yenisei river discharge in the southern part of the Kara Sea during summer and autumn,” J. Geophys. Res.: Oceans 122, 5916–5935 (2017).https://doi.org/10.1002/2016JC012603

    Article  Google Scholar 

  34. T. R. Parsons, A Manual of Chemical & Biological Methods for Seawater Analysis (Elsevier, 2013).

    Google Scholar 

  35. K. G. Porter and Y. S. Feig, “The use of DAPI for identifying and counting aquatic microflora,” Limnol. Oceanogr. 25, 943–948 (1980).https://doi.org/10.4319/lo.1980.25.5.0943

    Article  Google Scholar 

  36. A. Saliot, G. Cauwet, G. Cahet, et al., “Microbial activities in the Lena River delta and Laptev Sea,” Mar. Chem. 53, 247–254 (1996).https://doi.org/10.1016/0304-4203(96)00035-7

    Article  Google Scholar 

  37. B. F. Sherr, E. B. Sherr, T. L. Andrew, et al., “Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors,” Marine Ecology Prog. Ser. 32, 169–179 (1986).

    Article  Google Scholar 

  38. B. Sherr, E. Sherr, and P. del Giorgio, “Enumeration of total and highly active bacteria,” Methods Microbiol. 30, 129–160 (2001).https://doi.org/10.1016/S0580-9517(01)30043-0

    Article  Google Scholar 

  39. A. I. Shiklomanov, R. M. Holmes, J. W. McClelland, S. E. Tank, and R. G. M. Spencer, “2021. Arctic great rivers observatory. discharge dataset, Ver. 20210527”; https://www.arcticrivers.org/data.

  40. L. Solorzano, “Determination of ammonia in natural waters by the phenolhypochlorite method,” Limnol. Oceanogr. 14, 799–801 (1969).https://doi.org/10.4319/lo.1969.14.5.0799

    Article  Google Scholar 

  41. J. H. Vosjan and G. J. van Noort, “Enumerating nucleoid-visible marine bacterioplankton: bacterial abundance determined after storage of formalin fixed samples agrees with isopropanol rinsing method,” Aquatic Microbial Ecology 14, 149–154 (1998).https://doi.org/10.3354/ame014149

    Article  Google Scholar 

  42. T. Weisse, “The microbial loop in the Red Sea: dynamics of pelagic bacteria and heterotrophic nanoflagellates,” Marine Ecology Progress Series 55, 241–250 (1989).

    Article  Google Scholar 

Download references

Funding

This research was carried out within state task no. 0128-2021-0007 and supported by the Russian Science Foundation, project nos. 17-77-10138 (treatment of bacterioplankton samples) and 19-17-00196 (analysis of hydrochemical parameters).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Romanova.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, N.D., Boltenkova, M.A., Polukhin, A.A. et al. Heterotrophic Bacteria of the Ob River Estuary during Growing Season: Spatial and Temporal Variability. Oceanology 62, 369–378 (2022). https://doi.org/10.1134/S0001437022030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437022030109

Keywords:

Navigation