Skip to main content
Log in

Currents in the Western Part of the Weddell Sea and Drift of Large Iceberg A68A

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

The drift of the large (length 160 km, area 5800 km2) A68A iceberg in the western part of the Weddell Sea is considered. Analysis was carried out on the basis of satellite images and field measurements in the region of the iceberg. The iceberg calved from the Larsen Glacier in July 2017 and slowly drifted northward. In February 2020, during cruise 79 of the R/V Akademik Mstislav Keldysh, hydrophysical observations were carried out near the iceberg. The presence of an iceberg in the western part of the Weddell Sea caused displacement of currents and fronts to the west in the space between the iceberg and the Antarctic Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. A. Zotikov, Yu. A. Ivanov, and R. V. Barbash, “Antarctic continental ice runoff and the formation of Antarctic bottom waters,” Okeanologiya (Moscow) 14, 607–613 (1974).

    Google Scholar 

  2. V. V. Klepikov, “Hydrology of the Weddell Sea,” Tr. Sov. Anatarkt. Eksp. 17, 45–93 (1963).

    Google Scholar 

  3. E. G. Morozov, V. A. Spiridonov, T. N. Molodtsova, et al., “Investigations of the ecosystem in the Atlantic sector of Antarctica (cruise 79 of the R/V Akademik Mstislav Keldysh),” Oceanology (Engl. Transl.) 60, 823–825 (2020).

  4. Yu. A. Romanov, “A brief history of observations of Antarctic icebergs, main objectives of iceberg research, and Iceberg Observation Data Center,” in Touching the Ocean (Institute of Computer Studies, Moscow, 2013), pp. 129–156. [in Russian]

    Google Scholar 

  5. M. Azaneu, K. J. Heywood, B. Y. Queste, and A. F. Thompson, “Variability of the Antarctic slope current system in the Northwestern Weddell Sea,” J. Phys. Oceanogr. 47 (12), 2977–2997 (2017).

    Article  Google Scholar 

  6. T. V. Boyer, O. K. Baranova, C. Coleman, et al., World Ocean Database 2018: NOAA Atlas NESDIS No. 87, Ed. by A. V. Mishonov (National Center for Environmental Information, Silver Spring, MD, 2019).

    Google Scholar 

  7. J. S. Budge and D. G. Long, “A comprehensive database for Antarctic iceberg, tracking using scatterometer data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (2), 434–442 (2018).

    Article  Google Scholar 

  8. L. L. Collares, M. M. Mata, R. Kerr, et al., “Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica,” Deep Sea Res., Part II 149, 10–24 (2018).

    Article  Google Scholar 

  9. L. P. A. M. Duprat, G. R. Bigg, and D. J. Wilton, “Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs,” Nat. Geosci. 9 (3), 219–221 (2016).

    Article  Google Scholar 

  10. G. D. Egbert and S. Y. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J. Atmos. Ocean. Technol. 19 (2), 183–204 (2002).

    Article  Google Scholar 

  11. E. Fahrbach, M. Hoppema, G. Rohardt, et al., “Decadal-scale variations of water mass properties in the deep Weddell Sea,” Ocean Dyn. 54 (1), 77–91 (2004).

    Article  Google Scholar 

  12. E. Fahrbach, R. G. Peterson, G. Rohardt, et al., “Suppression of bottom water formation in the southeastern Weddell Sea,” Deep Sea Res., Part I 41 (2), 389–411 (1994).

    Article  Google Scholar 

  13. E. Fahrbach, G. Rohardt, and G. Krause, “The Antarctic coastal current in the southeastern Weddell Sea,” Polar Biol. 12 (2), 171–182 (1992).

    Article  Google Scholar 

  14. R. M. Gladstone, G. R. Bigg, and K. W. Nicholls, “Iceberg trajectory modeling and meltwater injection in the Southern Ocean,” J. Geophys. Res.: Oceans 106 (9), 19903–19915 (2001).

    Article  Google Scholar 

  15. H. Han, S. Lee, J.-I. Kim, et al., “Changes in a giant iceberg created from the collapse of the Larsen C ice shelf, Antarctic Peninsula, derived from Sentinel-1 and CryoSat-2 data,” Remote Sens. 11 (4), 404 (2019).

    Article  Google Scholar 

  16. K. J. Heywood, A. C. Naveira Garabato, D. P. Stevens, and R. D. Muench, “On the fate of the Antarctic slope front and the origin of the Weddell front,” J. Geophys. Res.: Oceans 109 (6), C06021 (2004).

    Google Scholar 

  17. A. V. Krek, E. V. Krek, and V. A. Krechik, “Circulation and mixing zone in the Antarctic Sound in February 2020,” in Antarctic Peninsula Region of the Southern Ocean: Oceanography and Ecology (Springer–Nature-, Dordrecht, 2021).

  18. O. López, M. A. Garcıa, D. Gomis, et al., “Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait (Antarctica),” Deep Sea Res., Part I 46 (10), 1755–1778 (1999).

    Article  Google Scholar 

  19. G. Lopez-Lopez, F. Parmiggiani, M. Moctezuma-Flores, and L. Guerrieri, “SAR image observations of the A68 iceberg drift,” Cryosphere Discuss., (2020). https://doi.org/10.5194/tc-2020-180.

  20. N. Merino, J. Le Sommer, G. Durand, et al., “Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea ice,” Ocean Model. 104, 99–110 (2016).

    Article  Google Scholar 

  21. A. H. Orsi, W. D. Nowlin, and T. Whitworth III, “On the circulation and stratification of the Weddell Gyre,” Deep Sea Res., Part I 40, 169–203 (1993).

    Article  Google Scholar 

  22. F. Parmiggiani, M. Moctezuma-Flores, L. Guerrieri, and M. L. Battagliere, “SAR analysis of the Larsen-C A68 iceberg displacements,” Int. J. Remote Sens. 39 (18), 5850–5858 (2018).

    Article  Google Scholar 

  23. N. J. Robinson and M. J. M. Williams, “Iceberg-induced changes to Polynya operation and regional oceanography in the southern Ross Sea, Antarctica, from in situ observations,” Antarct. Sci. 24 (5), 514–526 (2012).

    Article  Google Scholar 

  24. Yu. A. Romanov, N. A. Romanova, and P. Romanov, “Distribution of icebergs in the Atlantic and Indian ocean sectors of the Antarctic region and its possible links with ENSO,” Geophys. Res. Lett. 35 (2). L02506 (2008). https://doi.org/10.1029/2007GL031685

    Article  Google Scholar 

  25. Yu. A. Romanov, N. A. Romanova, and P. Romanov, “Shape and size of Antarctic icebergs derived from ship observation data,” Antarct. Sci. 24 (1), 77–87 (2012).

    Article  Google Scholar 

  26. P. Sangrà, C. Gordo, M. Hernández-Arencibia, et al., “The Bransfield current system,” Deep Sea Res., Part I 58 (4), 390–402 (2011).

    Article  Google Scholar 

  27. M. P. Schodlok, H. H. Hellmer, G. Rohardt, and E. Fahrbach, “Weddell Sea iceberg drift: five years of observations,” J. Geophys. Res.: Oceans 111 (6), 4807–4825 (2006).

    Google Scholar 

  28. T. A. M. Silva and G. R. Bigg, “Computer-based identification and tracking of Antarctic icebergs in SAR images,” Remote Sens. Environ. 94 (3), 287–297 (2005).

    Article  Google Scholar 

  29. T. A. M. Silva, G. R. Bigg, and K. W. Nicholls, “Contribution of giant icebergs to the Southern Ocean freshwater flux,” J. Geophys. Res.: Oceans 111 (3), C03004 (2006).

    Google Scholar 

  30. K. L. Smith, B. H. Robison, J. J. Helly, et al., “Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea,” Science 317 (5837), 478–482 (2007).

    Article  Google Scholar 

  31. K. M. Stuart and D. G. Long, “Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer,” Deep Sea Res., Part II 58 (11–12), 1285–1300 (2011).

    Article  Google Scholar 

  32. R. Yu. Tarakanov, “MultiJet structure of the Antarctic Circumpolar Current,” in Antarctic Peninsula Region of the Southern Ocean: Oceanography and Ecology (Springer-Nature-, Dordrecht, 2021).

  33. A. F. Thompson and K. J. Heywood, “Frontal structure and transport in the northwestern Weddell Sea,” Deep Sea Res., Part I 55 (10), 1229–1251 (2008).

    Article  Google Scholar 

  34. A. F. Thompson, K. J. Heywood, S. E. Thorpe, et al., “Surface circulation at the tip of the Antarctic Peninsula from drifters,” J. Phys. Oceanogr. 39 (1), 3–26 (2009).

    Article  Google Scholar 

  35. A.-B. von Gyldenfeldt, E. Fahrbach, M. A. García, and M. Schröder, “Flow variability at the tip of the Antarctic Peninsula,” Deep Sea Res., Part II 49 (21), 4743–4766 (2002).

    Article  Google Scholar 

  36. C. Wesche and W. Dierking, “Near-coastal circum-Antarctic iceberg size distributions determined from Synthetic Aperture Radar images,” Remote Sens. Environ. 156, 561–569 (2015).

    Article  Google Scholar 

  37. R. N. Williams, W. G. Rees, and N. W. Young, “A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica,” Int. J. Remote Sens. 20 (15–16), 3183–3199 (1999).

    Article  Google Scholar 

Download references

Funding

This study was performed within the framework of the state assignment of the Shirshov Institute of Oceanology, Russian Academy of Sciences (no. 0128-2019-008) and Scientific Research Institute of Aerospace Monitoring 0588-2019-0030. The analysis of field observations in the Antarctic Sound was supported by grant MK-1492.2021.1.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Morozov.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.G., Krechik, V.A., Frey, D.I. et al. Currents in the Western Part of the Weddell Sea and Drift of Large Iceberg A68A. Oceanology 61, 589–601 (2021). https://doi.org/10.1134/S000143702105009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143702105009X

Navigation